a2 United States Patent

US009054992B2

(10) Patent No.: US 9,054,992 B2

Wright et al. 45) Date of Patent: Jun. 9, 2015
(54) QUALITY OF SERVICE POLICY SETS (56) References Cited
(71) Applicant: SolidFire, Inc., Boulder, CO (US) U.S. PATENT DOCUMENTS
(72) Inventors: David D. Wright, Boulder, CO (US), g’ggg’gg g} gggg% %‘;h etal.
Michael Xu, Boulder, CO (US) 6.604.155 Bl 82003 Chong, Ir.
6,741,698 B1* 5/2004 Jensen 379/265.02
(73) Assignee: SolidFire, Inc., Boulder, CO (US) 7,110,913 B2* 9/2006 Monroe et al. 702/179
7,457,864 B2* 11/2008 Chambliss et al. 709/224
(*) Notice: Subject to any disclaimer, the term of this ;,23‘2,538 g% * ?; %8(1)8 E}ljiih ~~~~~~~~ AR 709/224
. f ,647, ischman et al.
%atselg 11552)((1?):%?((1) g;yas‘dJu“ed under 35 8,156,016 B2* 4/2012 Zhang ..oooooooroceorererervere 705/30
o . (Continued)
(22) Filed: Apr. 4,2013 International Search Report and Written Opinion of the International
Search Authority received in PCT/US12/71844 mailed Mar. 1, 2013
(65) Prior Publication Data (12 pages).
US 2013/0232261 A1 Sep. 5, 2013 (Continued)
Related U.S. Application Data Primary Examiner — Ninos Donabed
(63) Continuation of application No. (74) Attorney, Agent, or Firm — Foley & Lardner LLP
a continuation-in-part of application No. 13/338,039,))
filed on Dec. 27, 2011. Disclosed are systems, computer-readable mediums, and
o o methods for receiving client quality of service values associ-
(60) Provisional application No. 61/697,905, filed on Sep. ated with a first client. Client metrics of a volume in a storage
7,2012. system are determined for the first client. The client metrics
reflect usage of the storage system by the first client. A client
(1) Int.Cl. load value based is determined upon the client metrics. A
HO4L 12/24 (2006.01) quality of service management policy for the first client is
GOGF 3/06 (2006.01) determined from a plurality of quality of service management
GO6F 11/34 (2006.01) policies based upon the client load value. Each quality of
(52) US.ClL service management policy comprises a formula based on a
CPC HO4L 41/50 (2013.01); HO4L 41/5067 quality of service parameter. A client target performance
(2013.01); GO6F 3/061 (2013.01); GOGF value is determined based upon the formula of the quality of
3/0659 (2013.01); GO6F 3/067 (2013.01); service management policy and the received client quality of
GO6F 11/3485 (2013.01); GOGF 11/3433 service values. Performance of the storage system is adjusted
(2013.01); GO6F 2201/81 (2013.01) for the first client based upon the client target performance
(58) Field of Classification Search value.

None
See application file for complete search history.

18 Claims, 22 Drawing Sheets

QoS Client Policy Management 1500
Pracedure

1502

1
I:No—aiate analysis of system andior client metrics?

T
Yes

1504

r Initiate analysis of system and/or client metrics I

1506

Determine current Load(Client) value ‘

}

1508

Analyze Load(Client) value and implement appropriate
QoS Management Policy

Load(Client) < Threshold Value A1

Threshold Value A1 2 Lcid(01lenij 2 Threshold Value A2

Load(Client) > Threshold Value A2

Implement QoS Implement QoS Implement QoS
Management Policy Management Palicy Management Policy
Set At Set B1 SetC1

| 1510 |

1512 { L1515

US 9,054,992 B2

Page 2
(56) References Cited 2009/0225657 Al* 9/2009 Haggaretal. ... 370/235
2009/0285476 Al* 11/2009 Choe et al. 382/162
U.S. PATENT DOCUMENTS 2010/0023726 Al* 1/2010 Avilescocccoovoovrccvirran. 7117216
2010/0223385 Al 9/2010 Gulley et al.
8,214,868 B2* 7/2012 Hamilton etal. 725/94 2010/0250712 A1* 9/2010 Ellisonetal. 709/219
8,369,217 B2* 2/2013 Bosticaetal. ...cceoo...... 370/232 2011/0022812 Al 1/2011 V?m Der Linden et al.
2002/0059274 Al 5/2002 Hartsell et al. 2011/0096675 Al 4/2011 Lietal.
2002/0112097 Al 8/2002 Milovanovic et al. 2011/0161293 Al 6/2011 Vermeulen et al.
2003/0028642 Al 2/2003 Agarwal et al. 2011/0238857 Al 9/2011 Certain et al.
2003/0115204 Al 6/2003 Greenblatt et al. 2012/0124282 Al 5/2012 Frank et al.
2003/0212872 Al 11/2003 Patterson et al. 2012/0185437 Al 7/2012 Pavlov etal.
2003/0223445 Al 12/2003 Lodha 2012/0317353 A1 12/2012 Webman et al.
2004/0054656 Al 3/2004 Leung et al. 2012/0317395 Al 12/2012 Segev et al.
2004/0107281 Al 6/2004 Bose et al. 2013/0124776 Al 5/2013 Hallak et al.
2004/0133622 Al 7/2004 Clubb et al. 2013/0166724 Al* 6/2013 Bairavasundaram et al. 709/224
2004/0153544 Al* 8/2004 Kelliheretal. ... 709/226 2013/0166727 Al* 6/2013 Wrightetal. 709/224
2005/0043834 Al* 2/2005 Rotariuet al. 700/95 2013/0173955 Al 7/2013 Hallak et al.
2005/0128951 Al* 6/2005 Chawla etal. .. 370/235 2013/0305002 A1 11/2013 Hallak et al.
2006/0071845 Al* 4/2006 Stroili et al. 342/13
2006/0072555 A1* 4/2006 St. Hilaire etal, 370/352 OTHER PUBLICATIONS
2006/0072593 Al* 4/2006 Grippoetal. 370/409 L .)
2007/0041330 Al* 2/2007 Bostica et al. 370252 Non-final Office Action issued in U.S. Appl. No. 13/856,958 mailed
2007/0064604 Al* 3/2007 Chenetal. 370/230 Jul. 31, 2013 (16 pages).
2007/0094452 Al* 4/2007 Fachan 711137 Final Office Action received for U.S. Appl. No. 13/856,958 mailed
2007/0112723 Al 5/2007 Alvarez et al. Feb. 6, 2014 (21 pages).
300 AL, 2007 Mamakabeetal. Soos NonFinal Office Action received in U.S. Appl. No. 13/338,039
2007/0271391 AL* 11/2007 Fujii o 700240 ~ Mmailed Sep. 10,2014, 17 pages. .
2008/0165899 Al* 7/2008 Rahman et al. .o.o........... 375/319 Notice of Allowance received in U.S. Appl. No. 13/338,039 mailed
2008/0201535 Al* 8/2008 Haraocccoooocevvvenre. 711/153 Dec. 8, 2014, 8 pages.
2009/0077097 Al 3/2009 Lacapra et al. . .
2009/0150537 Al* 6/2009 Fansonc........ 709/224 * cited by examiner

US 9,054,992 B2

Sheet 1 of 22

Jun. 9, 2015

U.S. Patent

BGTT JaAias el1EpRISN 1ohe| e1epelaN

V1 'DId

911

a8el03S
_.l lllll b | _l ttttt b | _|| IIIII -/ "
o= N !
* UOTT | _ 1T | , qe¢tl | eCIT !

“ PENVELN | | FELSELS — | SELVEILS | PETIELS “ 901

| ¥oig b $0|g b $o|g _ ¥0ig _

_ 18Ae] JaAIas Yoolg
| R Dol _ “
............................ /

e
o e e — e e e e — “
UyLiT 498euew _ _ it 4a8eurw _ By1T Jo8euew |
23UEWI0LI9d _ 20UEBWIOLI9Y _ 9oURW.IOLIad ”
, ' > poT
I |
|
| |
|

|
i
i
i
ugotl ! B80T]
wald _ wayd “ V ot
| Jakej i
i
{

.n::M.IHi‘.al...ul:H.nlt ::::::::::::::: S (/ooH

US 9,054,992 B2

Sheet 2 of 22

Jun. 9, 2015

U.S. Patent

ugtrt

_
_
“ pRlelfe
|

RTANN

|
|
3¥70|9 |
|

ULTT J98euew
3JUeWl0}I3d

uyct
SEYSEINEBIIN

qyci
SETNEINERIIS

5741
JEYSEINES TS

BZTI
JEYSEIS

1201d

[| avTT 138euew
| 9JUEBWLIOISd

{

{

{

| U801
! walp
i

H

BLIL {28euew
IUBWIOLI

EZ el JOAI3S WN|OA

0¢t
JEYSELS
1012341pay

€80T
Wwald

> 90T

JaAe) Janlas yo0jg

> v01

J3Ae| eepelsy

> 701

Jakejuald

.1//z:ooﬂ

US 9,054,992 B2

Sheet 3 of 22

Jun. 9, 2015

U.S. Patent

¢ 'Ol
802
s/ gN LOTET 275 £ QN LO'TET yIpImpueg xep aAR>3333
Sda01 05 S40I QDG 5400 £ a4 952
907 A S0l 966G S400 956G sS40l [a1 91
S401 G/E 5401 C/E6 540! €9 a 8
e - ks i Ao
20Z° sS40t 00OST 5ol 000ST sdot 001 !y
v ising xew ww az15 OI

sislawWeled 991A19S Jo Ajljenp
> 00z

U.S. Patent Jun. 9, 2015 Sheet 4 of 22 US 9,054,992 B2

300—¢

30\2/\ Determine client load based on a performance metric
'

30% Gather information about health of the cluster
l

30% Determine a target performance value
'

30@/\ Adjust the performance of the client

FIG. 3

US 9,054,992 B2

Sheet 5 of 22

Jun. 9, 2015

U.S. Patent

jeudis

JOJ3U0D U3

¥ 'OId
-
ouewI0pad 13D
90v vov
13jj00u0d | 32019
3JUBWI04Iad anjeauauasnipe | 5.613u00 id

IduewIo}Iad

—5J1I}3|A| JU3I|D
oy
1a8euew
anjeA 9oUBWIOpRd [SOMBN WalsAS
duewlopad 19818)

1o8ie] sJalaweled

"

NelopULille]

Jadeuew aduewJsollad

Vil

US 9,054,992 B2

Sheet 6 of 22

Jun. 9, 2015

U.S. Patent

S 'Ol

9ZIS Ol wy We WL MZLS M9GZ M82ZL MP9 MZe M9l M8 M AR

PBOT e

SAOI s

- v o T) o o e) .
4 ") P P i e S e

SW

aAIND aduBWIOHad

%00

%0°0¢

%0°0¥

%009

%008

%0001

%0°0Z}
peoT

U.S. Patent Jun. 9, 2015 Sheet 7 of 22 US 9,054,992 B2

Determine client metrics

'

Determine system metrics

'

606/

Determine overloaded system based upon a system load value

y

608/

Determining client metric associated with the system load value

'

610/"\

Determine a client specific factor based upon the client metric
associated with the system load value

'

612/

Calculate target performance value based upon client QoS
performance parameters and the client specific factor

61@/\

Adjust the performance of the client

FIG. 6

US 9,054,992 B2

Sheet 8 of 22

Jun. 9, 2015

U.S. Patent

L Ol
€T [11 ot 6 8
L | € e Tt jof 6 | I LA 0 I U T
= C
SAOI U - —============ == ::::a.lu.:unﬂ\-il B e e § == 0§
SHO| XeW - —mmmee—e L L :”l-:‘m-anl l:!:MVJﬁ-ia 00T
\ ¢om-\\\\\
N S R — 0stT
Sd01 / K R i = = 00¢
1sing
— 0s¢
00¢
<
Sdol —=— 20/~
SHPaI) ﬁ 0sg
L= ¥>—00/

US 9,054,992 B2

Sheet 9 of 22

Jun. 9, 2015

U.S. Patent

£v8

j a enen
; ploysaiy |
O eneA
78 ploysaly L
sv8—
ov8
€8

g ebie] gop
/Buiuoisinoid 104

D 1ebie) sod
/BuiuoIsincld

g Jojelrad

g Joyesado | 8(Q 0}

0 JojessdQ a(0]

918

........ 008

g anjeA
ploysaly
Y anjeA
ploysalyl

v JojesadQ

gedA|
la)pweled
SO0

S 80AL
Jsjpweled

SO0

a
lojesadQ

ueajoog

18S
S

}18S

g uonipuoD
Aiepunog

q Joyesed
uesjoog

V uoiipuo)
Aepunog

US 9,054,992 B2

Sheet 10 of 22

Jun. 9, 2015

U.S. Patent

906 ¥06
oRUC] o gu810
S Pl
\ \\\/l
_— 2906 BY06
. 7 ~av06
80— L6 PL6—, 216
. “ | __/_ | _{geomsg) (g ®o1nI8g) w
i oee (0 2omeg) - - - o - (aonogf - - | 0 eomeg)a- |- - A |- Y 809G w
m (4 B0INIBg) € 9PON P, JE (e m
Feesmsenrnnrnnennaaeaaes “.\. .. \ J.\.................-......-........-..-..
06 9906 4906
NNOOI/\ 7
k‘\
206
v uel)

U.S. Patent

Jun. 9, 2015 Sheet 11 of 22 US 9,054,992 B2
1002 4
Service_ID Load(Service)
Service A Value A1 e— 1001
Service B Value B1 e— 1003
Service C Value C1 1005
[] [4
. .

Fig. 10

1102 1104 1106
Y v ¥
Service_ID Load(Read) Load(Write)
Service A Value A2 Value A3 e—— 1101
Service B Value B2 Value B3 ~— 1103
Service C Value C2 Value C3 e 1105
. [:
. . .
Fig. 11 o
1202 1204 1206
v v v
. Primary Slice Associated Replication
Client_ID Service_ID Service_ID(s)
Client A Service A Service C e 1201
Client B Service E Service D - 1203
Client C Service E Service C, Service G e—__1205
[] ® ®
L » *
] [] []

Fig. 12 e

U.S. Patent Jun. 9, 2015 Sheet 12 of 22 US 9,054,992 B2

1300
(Load(Service) Analysis Procedure)

:\ 1302

;r NO—<

Initiate analysis of system and/or client metrics? >

Y:as
¢ 1304

Initiate analysis of system and/or client metrics

1306

Determine current Load(Service) value for selected
Service

1308

<

Has current Load(Service) value for selected Service
changed from previously calculated Load(Service)

value?
Yes
v 1310
Save current Load(Service) value in local Load-Service
Table

1312

Push Load(Service) value update info to system nodes

(Done)

Fig. 13A

US 9,054,992 B2

Sheet 13 of 22

Jun. 9, 2015

U.S. Patent

D¢l b4

sapou
wajsAs o) ojui ajepdn anjeA (8jpn)peo ysnd

29} I

a|qe 2oIMeS
-peOT [BI0] Ul @NjeA (BIIAM)PEBOT JUSLIND BABS

0g¢el A
SO

¢,aN|_A
(ajup)pEOT paejnofed Ajsnolraid wol) pabueyo
90IAIag Po109|9S 10} aNfeA (8}LA)PEeOT JUBLINd SeH

8G¢l +
80IAIBS
pa}a]as 10} anjeA (SJAN)PeOT JUBLIND BulWWaleq
95€))
SOLJBW Jusl0 Joj/pue WialsAs Jo SiSAfeue ajenul
) *

SAA

;SoLJaL JUsIjo Jojpue Wa)sAs Jo SisAfeue sjenu|

ON—

ON

<%

zZ5¢l ?

aInpa0ld sisAjeuy (81AN)PEOT U

0SEl

dael ‘b4

auoQ
$apou
wa)sAs 0) ojui ajepdn anjea (peay)peo ysnd
cveEL= A
8|qe 92IAI9S
-peoT [e00] Ul 9njeA (PEaY)PROT JUBLIND SABS
ovel > 4
SOA

RN CINESREER
pajejnales Ajsnoinaid wioly pabueyo sainieg
pa}0a|8s 0} ANjeA (991A8S)PROT JUSLIND SBH

— 8t B +

eI EIY
pa)oa|es 10} aNnjeA (peay)peo Jualind suiwlsleg
9ee) A

SOl Jualjo Jojpue wa)sAs Jo sishjeue sjeniu|

veel \M mM>

. y
£,SOLJaW JUBI[0 J0/pUB WB)SAS JO SisAjeue ajeniu| VIozIwﬂ

ON_—,

NmmL ,T

ainpadold Sishjeuy (peay)peo U
0eel

U.S. Patent Jun. 9, 2015 Sheet 14 of 22 US 9,054,992 B2
1400
(Load(Client) Analysis Procedure)
Ty 1402

T
Yes

!

—N0< Initiate analysis of system and/or client metrics? >

1404

Initiate analysis of system and/or client metrics

v

1406

Identify Service(s) associated with selected Client

'

140

@

Determine current Load(Client) value

Done

Fig. 14

U.S. Patent Jun. 9, 2015 Sheet 15 of 22 US 9,054,992 B2

QoS Client Policy Management 1500
Procedure

N 1502

-—-——No~< Initiate analysis of system and/or client metrics? ><

T
Yes

l 1504

Initiate analysis of system and/or client metrics

1506
\ 4

Determine current Load(Client) value

1508
v [

Analyze Load(Client) value and implement appropriate
QoS Management Policy

Load(Client) < Threshold Value A1 Load(Client) > Threshold Value A2
— L
Threshold Value A1 2 Load(Client) = Threshold Value A2

\ 4 v) 4

implement QoS
Management Policy
Set A1

1510

Implement QoS
Management Policy
Set B1

1512

Implement QoS
Management Policy
Set C1

{1515

Fig. 15

U.S. Patent Jun. 9, 2015 Sheet 16 of 22 US 9,054,992 B2

QoS Client-Read Policy Management 1600
Procedure

> 1602

—N0‘< Initiate analysis of system and/or client metrics? >:

Yés
{ 1604

Initiate analysis of system and/or client metrics

v 1606

Determine current SSLOAD(Client-Read) value for selected
Client

v 1608

Analyze SSLOAD(Client-Read) value and implement
appropriate QoS Management Policy

SSLOAD(Client-Read) < Threshold Value A1 SSLOAD(Client-Read) > Threshold Value A2

N I
Threshold Value A1 = SSLOAD(Client-Read) = Threshold Value A2

Y l Y

Implement QoS Implement QoS Implement QoS
Management Policy Management Policy Management Policy
Set A2 Set B2 Set C2
l 1610 1612 1614

Fig. 16

U.S. Patent Jun. 9, 2015 Sheet 17 of 22 US 9,054,992 B2

QoS Client-Write Policy Management 1700
Procedure

»
P

, 1702

'—No—< Initiate analysis of system and/or client metrics?
I

Yes

l 1704

Initiate analysis of system and/or client metrics

1706
A 4

Determine current SSLOAD(Client-Write) value for selected
Client

1708

Yy
Analyze SSLOAD(Client-Write) value and implement
appropriate QoS Management Policy

SSLOAD(Client-Write) < Threshold Value A1 SSLOAD(Client-Write) > Threshold Value A2

] I

Threshold Value A1 > SSLOAD(Client-Write) = Threshold Value A2

Y

Y

Implement QoS
Management Policy
SetA3

|

1710

Implement QoS
Management Policy
Set B3

1712

Implement QoS
Management Policy
Set C3

C 1714

Fig. 17

US 9,054,992 B2

Sheet 18 of 22

Jun. 9, 2015

U.S. Patent

w—\ m_.H_ Y pec o)Ly

\ peo Joj gy Y Pe07 104 2V
anjep pjoysaiy] ANjeA ploysaiyl anjeA piousalyl 0
_J ~N
1081 %
Y peo? 3
1181 <&
//M
€081 -/ : NI
19—
w b i s
soa1— | m | o
: ; Sdol
H ; LSdng
won—" L A N
A Y, NA 0i8}
0188 Adyjod g 188 Aoljod v 18S Aajjod Sdol
0081 \ Juswabeuey Juawabeuep Juswiabeuepy
8 SO0 SO0 S0D

US 9,054,992 B2

Sheet 19 of 22

Jun. 9, 2015

U.S. Patent

V6l

(usyn)peoT (syp)peo] (usyo)peo

1o} gy 10} ¢) m_H_ NAY
anjeA ploysaiyL anje/ pjoysaiyl 8NjeA PlousaiyL 0
(ueyo)peo] f: : / \
P k?/ 82/
\ NN /// N1CL
H e
" / Sdol
: | . / ,
ool m m / NI
G161 .\
Sdol
G061 ~/ X
m ; Sdol 1
e~ L A XYW
1D “mW\\G__oa 14 wmw%:_on_ v Hm%ozon_ Sdoi
|\ uswabeuep Juswabeuep Juswiabeuepy N 0L6L
0061 50D Sele) $00

US 9,054,992 B2

Sheet 20 of 22

Jun. 9, 2015

U.S. Patent

(uslo)avon
loj gy
anjep pjoysaiy L
v10=

(lus)avon
Flolra -4
ms_m> EOmeE.ﬁ

Jaa—
§16L (quaig)avor | — £V6

(wain)avo
1o} Ly
anjeA pjoysaiyl

del "b14

85 0= 6¢ 0=
(0 wa1I9)av01 (81499)av0

v\lommr
A

(v 1uel9)avo 0

106} N%T\m

_ E9061

(LDdWD '52°0 '7£°0)
BZ661

€06l -/ — o

momﬁl\

o ﬁ f

%21_ NBT_ L6E—"
1

i
t
i
b
i
i
1
i
——
i
i
i
1
i
i
i
i
t
i
i

L]
1
1
1
'
'
'
'
'
1
1
—-—-—
‘ 1
'
'
'
'
'
'
'
1
1
qaq—n-—-'n—qu—-o--
)

(LEdWD '6L°0'65°0) o«
BZ86)
ey061

(18D ‘870 '68°0) _o
BZ.6)

- — e — —] T— o — o {— . o—

((

296!

pl=
anjeA @ jusid
Sdol 1ebie]

B e e . L

Sdol
NIW
gl=
anjeA O usl)
SdO| yebue]

wamammeneanehbondunmeealocinicniinnd

Zl=
anjeA g Jusi)
Sdo| 1ebie

Ry

BC96)

(LYdWD '0') .ag\ mNomT\ XA

e
anjeA v Jusi)
SOl jebie]

Sdol

A A

L 1Sdndg

~
10198 Adljod
uawabeuep SO

A
18185 Adljod
yuswabeuepy S0

XYW
1y 19% Koijod Sdol
Juswabeuep L 3OMYL

SO0

016

US 9,054,992 B2

Sheet 21 of 22

Jun. 9, 2015

U.S. Patent

(peay (peay ON . @ _ H_ (peay

-usi|))peo 1o} -Juslj0)peo Joj -Jual|))peo o}
1002 L2013 DIOUSH ZY 3N[ej Ploysaiyl LY 8NjEA PIOYSAIYL 0
&\\\\\ , N /\
: \.7 N N
" . @oowf/////
7,/// N 0T
" . NRNEH02
“ 9002 \\///
' \/ Y007 2002 Sdol
P br// SNNNAN avay
sooe—" m BN\ NIW
H H ///‘ .
Ny
: : W
Y ; ep00¢
SL0z—"} m
: Sd0i
: A avay
s00z—" XYW
: : : x S0l
: m ; JLIHM
. R e - NS
wie—" | I Je A
YO A Y,
79108 Aotjod zd19S Adljod 2V 195 Aoljod Sdol
\ Juswsabeuepy slwabeuepy Juswabeuepy __
000¢ S0D 30D ole) 010¢

US 9,054,992 B2

Sheet 22 of 22

Jun. 9, 2015

U.S. Patent

(8lpm-usliD)pec 1o}

(8lum-uslio)peo Joj _‘ N . @_H_

(311M-1UaiD)pea Joy

1017 £V anjeA ploysauy | TV 8njeA pioysalyl LV 9NjeA ploysaiy) .
m KMV/ @07 ///.
:] :
m \\V m:m./ X AATASS]
P B0l % //
: \\& ¥0L¢ ﬂ» ¢0i¢ sdol
" s ‘ JLIEM
iz~ |] N .
" : NI
By0L2
sz w
Sdol
/o i . LM
5012 m m m L)
w . \ $dOl
" m “ e
mz— A e 1s4ng
i Y- ~ A XN
£018S Adllod £8 185 Aoljod ey 198 o110 S0l
00 Fwi\ JuswaBbeuep Juswabeuep Juswabeue
$°0 Sy So0 ~0L1Z

US 9,054,992 B2

1
QUALITY OF SERVICE POLICY SETS

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application is a continuation of International Appli-
cation No. PCT/US12/71844 filed, Dec. 27, 2012, which is a
continuation-in-part of U.S. application Ser. No. 13/338,039,
filed Dec. 27, 2011, and also claims the benefit of U.S. Pro-
visional Application No. 61/697,905, filed Sep. 7, 2012, the
entirety of each are incorporated herein by reference.

BACKGROUND

The following description is provided to assist the under-
standing of the reader. None of the information provided is
admitted to be prior art.

In data storage architectures, a client’s data may be stored
in a volume. Typically, the volume’s data resides on a small
percentage of drives in a storage cluster. This arrangement
leads to issues of hot spots where portions of the cluster are
over-utilized while other portions of the cluster are under-
utilized. For example, if a client is performing a large number
of accesses of data in the volume, the load attributed to the
small percentage of drives in which the data is stored
increases, resulting in a hot spot. This arrangement may result
in a client experience that is inconsistent across all volumes of
the cluster as some clients may experience good performance
if their data is stored on portions that are under-utilized and
some clients experience poor performance if their data is
stored on over-utilized portions.

One way of attempting to provide a better client experience
is using quality of service based on client prioritization. For
example, clients may be assigned different priority levels.
Based on these priority levels, access requests (e.g., read and
write requests) for various clients are prioritized. Clients’
access requests are dispatched based on the load of the cluster
and a priority assigned to each client. For example, a client
having a higher priority may have more access requests pro-
cessed than another client having a lower priority during
times when the cluster is experiencing higher load. Using the
priority system only allows for a slightly better client expe-
rience. For example, priorities do not guarantee a specific,
consistent level of performance and are based on the idea that
the cluster is dividing its full performance among all clients
all the time. One reason for this is that a single client’s effects
on performance of the cluster are not capped, when the sys-
tem is stressed, the system always runs slow regardless ofhow
many customers are on the system since it is still running
prioritized. Prioritization also makes it difficult for customer
to understand the actual performance they are receiving,
because prioritization does not extend an understandable idea
to customers of the actual performance the customers are
getting. Also, prioritization does not allow administrators to
control how the system supports multiple customers and how
the customers drive the system to load.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present disclosure
will become more fully apparent from the following descrip-
tion and appended claims, taken in conjunction with the
accompanying drawings.

FIG. 1A depicts a simplified system for performance man-
agement in a storage system in accordance with an illustrative
implementation.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1B depicts a more detailed example of a system in
accordance with an illustrative implementation.

FIG. 2 depicts a user interface for setting quality of service
parameters in accordance with an illustrative implementa-
tion.

FIG. 3 depicts a simplified flowchart of a method of per-
forming performance management in accordance with an
illustrative implementation.

FIG. 4 depicts a more detailed example of adjusting per-
formance using a performance manager in accordance with
an illustrative implementation.

FIG. 5 depicts a performance curve comparing the size of
input/output operations with system load in accordance with
an illustrative implementation.

FIG. 6 depicts a simplified flowchart of a method of per-
forming performance management that matches an over-
loaded system metric with a client metric in accordance with
an illustrative implementation.

FIG. 7 depicts a graph of a number of IOPS performed by
client over a time period in accordance with an illustrative
implementation.

FIG. 8 shows an example QoS Interface GUI 800 which
may be configured or designed to enable service providers,
users, and/or other entities to dynamically define and/or cre-
ate different performance classes of use and/or to define per-
formance/QoS related customizations in the storage system
in accordance with an illustrative implementation.

FIG. 9 shows a portion of a storage system in accordance
with an illustrative implementation.

FIG. 10 illustrates a specific example embodiment of a
LOAD-Service data structure.

FIG. 11 illustrates an alternate example embodiment of a
LOAD-Service data structure 1100 which may be configured
or designed for tracking system load characteristics and con-
ditions associated with different services which are running
within the storage system.

FIG. 12 illustrates a specific example embodiment of a
Client-Service data structure.

FIG. 13A shows a flow diagram of a LOAD(Service)
Analysis Procedure in accordance with an illustrative imple-
mentation.

FIG. 13B shows a flow diagram of a LOAD(Read) Analy-
sis Procedure in accordance with an illustrative implementa-
tion.

FIG. 13C shows a flow diagram of'a LOAD(Write) Analy-
sis Procedure in accordance with an illustrative implementa-
tion.

FIG. 14 shows a flow diagram of a LOAD(Client) Analysis
Procedure in accordance with an illustrative implementation.

FIG. 15 shows a flow diagram of a QoS Client Policy
Management Procedure in accordance with an illustrative
implementation.

FIG. 16 shows a flow diagram of a QoS Client-Read Policy
Management Procedure in accordance with an illustrative
implementation.

FIG. 17 shows a flow diagram of a QoS Client-Write Policy
Management Procedure in accordance with an illustrative
implementation.

FIG. 18 shows a graphical representation illustrating how
the storage system implements aspects of a QoS Client Policy
Management Procedure such as that illustrated in FIG. 15 in
accordance with an illustrative implementation.

FIG. 19A shows a graphical representation illustrating how
different QoS Management Policy Sets for throttling Client
IOPS can be automatically and/or dynamically implemented
in response changing [L.oad(Client) conditions in accordance
with an illustrative implementation.

US 9,054,992 B2

3

FIG. 19B shows a graphic representation illustrating how
QoS Management and IOPS throttling may be simulta-
neously, independently, and dynamically implemented for
multiple different clients of the storage system in accordance
with an illustrative implementation.

FIG. 20 shows a graphical representation illustrating how
different QoS Management Policy Sets for throttling Client
IOPS can be automatically and/or dynamically implemented
in response changing [.oad(Client-Read) conditions in accor-
dance with an illustrative implementation.

FIG. 21 shows a graphical representation illustrating how
different QoS Management Policy Sets for throttling Client
IOPS can be automatically and/or dynamically implemented
in response changing Load(Client-Write) conditions in
accordance with an illustrative implementation.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

In general, one aspect of the subject matter described in this
specification can be embodied in methods for determining
client metrics of a volume in a storage system for a first client
of a plurality of clients. The storage system stores data from
the plurality of clients. System metrics of a cluster in the
storage system are determined based upon use of the storage
system by the plurality of clients. A load value of the storage
system is determined based upon the system metrics and the
client metrics. The load value is determined to be above a
predefined threshold. A target performance value is calcu-
lated based upon the load value, a minimum quality of service
value, and a maximum quality of service value. Performance
of'the storage system is adjusted for the client based upon the
target performance value and the determining the load value
is above the predefined threshold. Other implementations of
this aspect include corresponding systems, apparatuses, and
computer-readable media configured to perform the actions
of the method.

Another aspect of the subject matter described in this
specification can be embodied in methods for managing per-
formance in a storage system storing data for a plurality of
data volumes, wherein an individual data volume has an asso-
ciated client. A selection of a performance class of use for an
individual data volume is received. The performance class of
use is selected from a plurality of performance classes in
which at least one performance class of use has a different
Input Output Per Second (IOPS) quality of service parameter.
Accessto the individual data volume is managed based on the
IOPS quality of service parameter of the selected perfor-
mance class of use. Other implementations of this aspect
include corresponding systems, apparatuses, and computer-
readable media configured to perform the actions of the
method.

Another aspect of the subject matter described in this
specification can be embodied in methods for determining a
load value associated with access of data stored in a storage
system for a client. The data is divided into a plurality of
blocks and are stored substantially evenly across a plurality of
nodes of the storage system. The storage system includes data
from a plurality of clients. A requested quality of service
parameter from the client is received. Access of the data
according to the requested quality of service parameter is
monitored. Access to the data is throttled based upon the
monitoring access of the data. Other implementations of this

10

20

25

40

45

55

4

aspect include corresponding systems, apparatuses, and com-
puter-readable media configured to perform the actions of the
method.

Another aspect of the subject matter described in this
specification can be embodied in methods for determining an
input/output operations per second (IOPS) metric associated
with access of data stored in a storage system for a client. The
data is divided into a plurality of blocks and the plurality of
blocks are stored substantially evenly across a plurality of
nodes of the storage system. The storage system includes data
from a plurality of clients. A requested IOPS value is
received. Access to the data is relegated based upon the
requested IOPS value. Other implementations of this aspect
include corresponding systems, apparatuses, and computer-
readable media configured to perform the actions of the
method.

Another aspect of the subject matter described in this
specification can be embodied in methods for receiving a
minimum performance quality of service parameter associ-
ated with a compute device accessing a storage system vol-
ume. System metrics associated with the storage system vol-
ume are received. A target performance value associated with
the compute device is calculated based on the minimum per-
formance quality of service metrics and the system metrics.
The target performance value is sent to a controller module
when the target performance value satisfies the minimum
performance quality of service metric such that the controller
module limits a performance of the compute device accessing
the storage system volume to the target performance value.
Other implementations of this aspect include corresponding
systems, apparatuses, and computer-readable media config-
ured to perform the actions of the method.

Another aspect of the subject matter described in this
specification can be embodied in methods for determining a
total amount of capacity for a storage system. The capacity is
defined by a quality of service parameter. A plurality of values
of the quality of service parameter that are provisioned for a
plurality of clients to access the storage system are received.
Each client in the plurality of clients is provisioned with a
value of the quality of service parameter. The plurality of
values that are provisioned for the plurality of clients in the
storage system are monitored and determined if the plurality
of'values violate a threshold. The threshold being based on the
total amount of capacity for the storage system. A signal is
automatically output when the plurality of values violate the
threshold to indicate an adjustment in a value of the quality of
service parameter for one or more clients or the total amount
of capacity for the storage system should be performed. Other
implementations of this aspect include corresponding sys-
tems, apparatuses, and computer-readable media configured
to perform the actions of the method.

Another aspect of the subject matter described in this
specification can be embodied in methods for provisioning a
plurality of clients with quality of service parameters to
access a storage system. Access of the storage system by the
plurality of clients is monitored. Performance of a client in the
plurality of clients in accessing the storage system is moni-
tored. The performance of the client in accessing the storage
system is controlled based on the quality of service param-
eters in which the client is provisioned. The performance of
the client and the access of the storage system by the plurality
of clients is analyzed to determine a target performance value
for the client. Control of the client in accessing the storage
system is dynamically adjusted to adjust the performance of
the client based on the quality of service parameters. Other
implementations of this aspect include corresponding sys-

US 9,054,992 B2

5

tems, apparatuses, and computer-readable media configured
to perform the actions of the method.

Another aspect of the subject matter described in this
specification can be embodied in methods for provisioning a
plurality of clients with a quality of service parameters to
access a storage system. Performance of a client in the plu-
rality of clients in accessing the storage system is monitored.
The performance of the client in accessing the storage system
is independently controlled based on the quality of service
parameters in which the client is provisioned without regard
to quality of service parameters provisioned for other clients
in the plurality of clients. A load value for the client is calcu-
lated based upon the use of the storage system by the client
and the quality of service parameters. The performance of the
client is analyzed with respect to the quality of service param-
eters for the client to determine a difference between the
performance and the load value. Access to resources of the
storage system is dynamically allocated to independently
adjust control of the performance of the client based on the
difference between the performance and the load value. Other
implementations of this aspect include corresponding sys-
tems, apparatuses, and computer-readable media configured
to perform the actions of the method.

Another aspect of the subject matter described in this
specification can be embodied in methods for adjusting client
access to data within a server system. A volume server in
communication with the client receives a request from the
client to access data. A performance manager monitors met-
rics and adjusts the client’s access to the data in response to
comparing the metrics against a target value. Other imple-
mentations of this aspect include corresponding systems,
apparatuses, and computer-readable media configured to per-
form the actions of the method.

Another aspect of the subject matter described in this
specification can be embodied in methods for adjusting
access by a client to data within a server system. A target value
indicating a target client metric is received. A request by the
client to access the data within the server system is received.
The client performance is compared to the target value and
based upon the comparison to the target value, the client’s
access to the data is adjusted.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, implementations, and features described above,
further aspects, implementations, and features will become
apparent by reference to the following drawings and the
detailed description.

Specific Example Embodiments

One or more different inventions may be described in the
present application. Further, for one or more of the
invention(s) described herein, numerous embodiments may
be described in this patent application, and are presented for
illustrative purposes only. The described embodiments are
not intended to be limiting in any sense. One or more of the
invention(s) may be widely applicable to numerous embodi-
ments, as is readily apparent from the disclosure. These
embodiments are described in sufficient detail to enable those
skilled in the art to practice one or more of the invention(s),
and it is to be understood that other embodiments may be
utilized and that structural, logical, software, electrical and
other changes may be made without departing from the scope
of the one or more of the invention(s). Accordingly, those
skilled in the art will recognize that the one or more of the
invention(s) may be practiced with various modifications and
alterations. Particular features of one or more of the

10

15

20

25

30

35

40

45

50

55

60

65

6

invention(s) may be described with reference to one or more
particular embodiments or figures that form a part of the
present disclosure, and in which are shown, by way of illus-
tration, specific embodiments of one or more of the
invention(s). It should be understood, however, that such
features are not limited to usage in the one or more particular
embodiments or figures with reference to which they are
described. The present disclosure is neither a literal descrip-
tion of all embodiments of one or more of the invention(s) nor
a listing of features of one or more of the invention(s) that
must be present in all embodiments.

Headings of sections provided in this patent application
and the title of this patent application are for convenience
only, and are not to be taken as limiting the disclosure in any
way. Devices that are in communication with each other need
not be in continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are in
communication with each other may communicate directly or
indirectly through one or more intermediaries. A description
of an embodiment with several components in communica-
tion with each other does not imply that all such components
are required. To the contrary, a variety of optional compo-
nents are described to illustrate the wide variety of possible
embodiments of one or more of the invention(s).

Further, although process steps, method steps, algorithms
or the like may be described in a sequential order, such pro-
cesses, methods and algorithms may be configured to work in
alternate orders. In other words, any sequence or order of
steps that may be described in this patent application does not,
in and of itself, indicate a requirement that the steps be per-
formed in that order. The steps of described processes may be
performed in any order practical. Further, some steps may be
performed simultaneously despite being described or implied
as occurring non-simultaneously (e.g., because one step is
described after the other step). Moreover, the illustration of a
process by its depiction in a drawing does not imply that the
illustrated process is exclusive of other variations and modi-
fications thereto, does not imply that the illustrated process or
any of its steps are necessary to one or more of the
invention(s), and does not imply that the illustrated process is
preferred.

When a single device or article is described, it will be
readily apparent that more than one device/article (whether or
not they cooperate) may be used in place of a single device/
article. Similarly, where more than one device or article is
described (whether or not they cooperate), it will be readily
apparent that a single device/article may be used in place of
the more than one device or article. The functionality and/or
the features of a device may be alternatively embodied by one
or more other devices that are not explicitly described as
having such functionality/features. Thus, other embodiments
of'one or more of the invention(s) need not include the device
itself.

Techniques and mechanisms described or reference herein
will sometimes be described in singular form for clarity.
However, it should be noted that particular embodiments
include multiple iterations of a technique or multiple instan-
tiations of a mechanism unless noted otherwise.

DETAILED DESCRIPTION

Described herein are techniques for a performance man-
agement storage system. In the following description, for
purposes of explanation, numerous examples and specific
details are set forth in order to provide a thorough understand-
ing of various implementations. Particular implementations
as defined by the claims may include some or all of the

US 9,054,992 B2

7

features in these examples alone or in combination with other
features described below, and may further include modifica-
tions and equivalents of the features and concepts described
herein.

Storage System

FIG. 1A depicts a simplified system for performance man-
agement in a storage system 100 in accordance with an illus-
trative implementation. System 100 includes a client layer
102, a metadata layer 104, a block server layer 106, and
storage 116.

Before discussing how particular implementations manage
performance of clients 108, the structure of a possible system
is described. Client layer 102 includes one or more clients
108a-108%. Clients 108 include client processes that may
exist on one or more physical machines. When the term
“client” is used in the disclosure, the action being performed
may be performed by a client process. A client process is
responsible for storing, retrieving, and deleting data in system
100. A client process may address pieces of data depending
on the nature of the storage system and the format of the data
stored. For example, the client process may reference data
using a client address. The client address may take different
forms. For example, in a storage system that uses file storage,
client 108 may reference a particular volume or partition, and
a file name. With object storage, the client address may be a
unique object name. For block storage, the client address may
be a volume or partition, and a block address. Clients 108
communicate with metadata layer 104 using different proto-
cols, such as small computer system interface (SCSI), Inter-
net small computer system interface (ISCSI), fibre channel
(FC), common Internet file system (CIFS), network file sys-
tem (NFS), hypertext transfer protocol (HTTP), web-based
distributed authoring and versioning (WebDAV), or a custom
protocol.

Metadata layer 104 includes one or more metadata servers
110a-110%. Performance managers 114 may be located on
metadata servers 110a-110%. Block server layer 106 includes
one or more block servers 112a-112#n. Block servers 112a-
112n are coupled to storage 116, which stores volume data for
clients 108. Each client 108 may be associated with a volume.
In one implementation, only one client 108 accesses datain a
volume; however, multiple clients 108 may access data in a
single volume.

Storage 116 can include multiple solid state drives (SSDs).
In one implementation, storage 116 can be a cluster of indi-
vidual drives coupled together via a network. When the term
“cluster” is used, it will be recognized that cluster may rep-
resent a storage system that includes multiple disks that may
not be networked together. In one implementation, storage
116 uses solid state memory to store persistent data. SSDs use
microchips that store data in non-volatile memory chips and
contain no moving parts. One consequence of this is that
SSDs allow random access to data in different drives in an
optimized manner as compared to drives with spinning disks.
Read or write requests to non-sequential portions of SSDs can
be performed in a comparable amount of time as compared to
sequential read or write requests. In contrast, if spinning disks
were used, random read/writes would not be efficient since
inserting a read/write head at various random locations to
read data results in slower data access than if the data is read
from sequential locations. Accordingly, using electrome-
chanical disk storage can require that a client’s volume of data
be concentrated in a small relatively sequential portion of the
cluster to avoid slower data access to non-sequential data.
Using SSDs removes this limitation.

In various implementations, non-sequentially storing data
in storage 116 is based upon breaking data up into one more

10

15

20

25

30

35

40

45

50

55

60

65

8

storage units, e.g., data blocks. A data block, therefore, is the
raw data for a volume and may be the smallest addressable
unitof data. The metadata layer 104 or the client layer 102 can
break data into data blocks. The data blocks can then be stored
on multiple block servers 112. Data blocks can be of a fixed
size, can be initially a fixed size but compressed, or can be of
a variable size. Data blocks can also be segmented based on
the contextual content of the block. For example, data of a
particular type may have a larger data block size compared to
other types of data. Maintaining segmentation of the blocks
on a write (and corresponding re-assembly on a read) may
occur in client layer 102 and/or metadata layer 104. Also,
compression may occur in client layer 102, metadata layer
104, and/or block server layer 106.

In addition to storing data non-sequentially, data blocks
can be stored to achieve substantially even distribution across
the storage system. In various examples, even distribution can
be based upon a unique block identifier. A block identifier can
be an identifier that is determined based on the content of the
data block, such as by a hash of the content. The block
identifier is unique to that block of data. For example, blocks
with the same content have the same block identifier, but
blocks with different content have different block identifiers.
To achieve even distribution, the values of possible unique
identifiers can have a uniform distribution. Accordingly, stor-
ing data blocks based upon the unique identifier, or a portion
of the unique identifier, results in the data being stored sub-
stantially evenly across drives in the cluster.

Because client data, e.g., a volume associated with the
client, is spread evenly across all of the drives in the cluster,
every drive in the cluster is involved in the read and write
paths of each volume. This configuration balances the data
and load across all of the drives. This arrangement also
removes hot spots within the cluster, which can occur when
client’s data is stored sequentially on any volume.

In addition, having data spread evenly across drives in the
cluster allows a consistent total aggregate performance of a
cluster to be defined and achieved. This aggregation can be
achieved, since data for each client is spread evenly through
the drives. Accordingly, a client’s I/O will involve all the
drives in the cluster. Since, all clients have their data spread
substantially evenly through all the drives in the storage sys-
tem, a performance of the system can be described in aggre-
gate as a single number, e.g., the sum of performance of all the
drives in the storage system.

Block servers 112 and slice servers 124 maintain a map-
ping between a block identifier and the location of the data
block in a storage medium of block server 112. A volume
includes these unique and uniformly random identifiers, and
so a volume’s data is also evenly distributed throughout the
cluster.

Metadata layer 104 stores metadata that maps between
client layer 102 and block server layer 106. For example,
metadata servers 110 map between the client addressing used
by clients 108 (e.g., file names, object names, block numbers,
etc.) and block layer addressing (e.g., block identifiers) used
in block server layer 106. Clients 108 may perform access
based on client addresses. However, as described above,
block servers 112 store data based upon identifiers and do not
store data based on client addresses. Accordingly, a client can
access data using a client address which is eventually trans-
lated into the corresponding unique identifiers that reference
the client’s data in storage 116.

Although the parts of system 100 are shown as being logi-
cally separate, entities may be combined in different fashions.
For example, the functions of any of the layers may be com-
bined into a single process or single machine (e.g., a comput-

US 9,054,992 B2

9

ing device) and multiple functions or all functions may exist
on one machine or across multiple machines. Also, when
operating across multiple machines, the machines may com-
municate using a network interface, such as a local area
network (LAN) or a wide area network (WAN). In one imple-
mentation, one or more metadata servers 110 may be com-
bined with one or more block servers 112 in a single machine.
Entities in system 100 may be virtualized entities. For
example, multiple virtual block servers 112 may be included
on a machine. Entities may also be included in a cluster,
where computing resources of the cluster are virtualized such
that the computing resources appear as a single entity.

FIG. 1B depicts a more detailed example of system 100
according to one implementation. Metadata layer 104 may
include a redirector server 120 and multiple volume servers
122. Each volume server 122 may be associated with a plu-
rality of slice servers 124.

In this example, client 108a wants to connect to a volume
(e.g., client address). Client 108a communicates with redi-
rector server 120, identifies itself by an initiator name, and
also indicates a volume by target name that client 1084 wants
to connect to. Different volume servers 122 may be respon-
sible for different volumes. In this case, redirector server 120
is used to redirect the client to a specific volume server 122.
To client 108, redirector server 120 may represent a single
point of contact. The first request from client 108a then is
redirected to a specific volume server 122. For example,
redirector server 120 may use a database of volumes to deter-
mine which volume server 122 is a primary volume server for
the requested target name. The request from client 108a is
then directed to the specific volume server 122 causing client
108a to connect directly to the specific volume server 122.
Communications between client 1084 and the specific vol-
ume server 122 may then proceed without redirector server
120.

Volume server 122 performs functions as described with
respect to metadata server 110. Additionally, each volume
server 122 includes a performance manager 114. For each
volume hosted by volume server 122, alist of block identifiers
is stored with one block identifier for each logical block on the
volume. Each volume may be replicated between one or more
volume servers 122 and the metadata for each volume may be
synchronized between each ofthe volume servers 122 hosting
that volume. If volume server 122 fails, redirector server 120
may direct client 108 to an alternate volume server 122.

In one implementation, the metadata being stored on vol-
ume server 122 may be too large for one volume server 122.
Thus, multiple slice servers 124 may be associated with each
volume server 122. The metadata may be divided into slices
and a slice of metadata may be stored on each slice server 124.
When arequest for a volume is received at volume server 122,
volume server 122 determines which slice server 124 con-
tains metadata for that volume. Volume server 122 then routes
the request to the appropriate slice server 124. Accordingly,
slice server 124 adds an additional layer of abstraction to
volume server 122.

The above structure allows storing of data evenly across the
cluster of disks. For example, by storing data based on block
identifiers, data can be evenly stored across drives of a cluster.
As described above, data evenly stored across the cluster
allows for performance metrics to manage load in system
100. If the system 100 is under a load, clients can be throttled
or locked out of a volume. When a client is locked out of a
volume, metadata server 110 or volume server 122 may close
the command window or reduce or zero the amount of read or
write data that is being processed at a time for client 108. The
metadata server 110 or the volume server 122 can queue

10

15

20

25

30

35

40

45

50

55

60

10

access requests for client 108, such that 10 requests from the
client 108 can be processed after the client’s access to the
volume resumes after the lock out period.

Performance Metrics and Load of the Storage System

The storage system 100 can also include a performance
manager 114 that can monitor clients” use of the storage
system’s resources. In addition, performance manager 114
can regulate the client’s use of the storage system 100. The
client’s use of the storage system can be adjusted based upon
performance metrics, the client’s quality of service param-
eters, and the load of the storage system. Performance metrics
are various measurable attributes of the storage system. One
or more performance metrics can be used to calculate a load
of'the system, which, as described in greater detail below, can
be used to throttle clients of the system.

Performance metrics can be grouped in different categories
of metrics. System metrics is one such category. System
metrics are metrics that reflect the use of the system or com-
ponents of the system by all clients. System metrics can
include metrics associated with the entire storage system or
with components within the storage system. For example,
system metrics can be calculated at the system level, cluster
level, node level, service level, or drive level. Space utiliza-
tion is one example of a system metric. The cluster space
utilization reflects how much space is available for a particu-
lar cluster, while the drive space utilization metric reflects
how much space is available for a particular drive. Space
utilization metrics can also be determined for at the system
level, service level, and the node level. Other examples of
system metrics include measured or aggregated metrics such
as read latency, write latency, input/output operations per
second (IOPS), read IOPS, write IOPS, I/O size, write cache
capacity, dedupe-ability, compressibility, total bandwidth,
read bandwidth, write bandwidth, read/write ratio, workload
type, data content, data type, etc.

IOPS can be real input/output operations per second that
are measured for a cluster or drive. Bandwidth may be the
amount of data that is being transferred between clients 108
and the volume of data. Read latency can be the time taken for
the system 100 to read data from a volume and return the data
to a client. Write latency can be the time taken for the system
to write data and return a success indicator to the client.
Workload type can indicate if IO access is sequential or
random. The data type can identify the type of data being
accessed/written, e.g., text, video, images, audio, etc. The
write cache capacity refers to a write cache or a node, a block
server, or a volume server. The write cache is relatively fast
memory thatis used to store data before it is written to storage
116. As noted above, each of these metrics can be indepen-
dently calculated for the system, a cluster, a node, etc. In
addition, these values can also be calculated at a client level.

Client metrics are another category of metrics that can be
calculated. Unlike system metrics, client metrics are calcu-
lated taking into account the client’s use of the system. As
described in greater detail below, a client metric may include
use by other client’s that are using common features of the
system. Client metrics, however, will not include use of non-
common features of the system by other clients. In one imple-
mentation, client metrics can include the same metrics as the
system metrics, but rather than being component or system
wide, are specific to a volume of the client. For example,
metrics such as read latency or write IOPS can be monitored
for a particular volume of a client.

Metrics, both system and client, can be calculated over a
period of time, e.g., 250 ms, 500 ms, 1 s, etc. Accordingly,
different values such as a min, max, standard deviation, aver-
age, etc., can be calculated for each metric. One or more of the

US 9,054,992 B2

11

metrics can be used to calculate a value that represents a load
of the storage system. As described in greater detail below,
various different load calculations can be calculated. Loads
can be calculated for the storage system as a whole, for
individual components, for individual services, and/or indi-
vidual clients. Load values, e.g., system load values and/or
client load values, can then be used by the quality of service
system to determine if and how clients should be throttled.

As described in greater detail below, performance for indi-
vidual clients can be adjusted based upon the monitored met-
rics. For example, based on a number of factors, such as
system metrics, client metrics, and client quality of service
parameters, a number of IOPS that can be performed by a
client 108 over a period of time may be managed. In one
implementation, performance manager 114 regulates the
number of IOPS that are performed by locking client 108 out
of a volume for different amounts of time to manage how
many IOPS can be performed by client 108. For example,
when client 108 is heavily restricted, client 108 may be locked
out of accessing a volume for 450 milliseconds every 500
milliseconds and when client 108 is not heavily restricted,
client 108 is blocked out of a volume every 50 milliseconds
for every 500 milliseconds. The lockout effectively manages
the number of IOPS that client 108 can perform every 500
milliseconds. Although examples using IOPS are described,
other metrics may also be used, as will be described in more
detail below.

The use of metrics to manage load in system 100 is possible
because a client’s effect on global cluster performance is
predictable due to the evenness of distribution of data, and
therefore, data load. For example, by locking out client 108
from accessing the cluster, the load in the cluster may be
effectively managed. Because load is evenly distributed,
reducing access to the client’s volume reduces that client’s
load evenly across the cluster. However, conventional storage
architectures where hot spots may occur result in unpredict-
able cluster performance. Thus, reducing access by a client
may not alleviate the hot spots because the client may not be
accessing the problem areas of the cluster. Because in the
described embodiment, client loads are evenly distributed
through the system, a global performance pool can be calcu-
lated and individual client contributions to how the system is
being used can also be calculated.

Client Quality of Service Parameters

In addition to system metrics and client metrics, client
quality of service (QoS) parameters can be used to affect how
a client uses the storage system. Unlike metrics, client QoS
parameters are not measured values, but rather variables than
can be set that define the desired QoS bounds for a client.
Client QoS parameters can be set by an administrator or a
client. In one implementation, client QoS parameters include
minimum, maximum, and max burst values. Using IOPS as
an example, a minimum IOPS value is a proportional amount
of performance of a cluster for a client. Thus, the minimum
IOPS is not a guarantee that the volume will always perform
at this minimum JOPS value. When a volume is in an overload
situation, the minimum IOPS value is the minimum number
of TOPS that the system attempts to provide the client. How-
ever, based upon cluster performance, an individual client’s
IOPS may be lower or higher than the minimum value during
an overload situation. In one implementation, the system 100
can be provisioned such that the sum of the minimum IOPS
across all clients is such that the system 100 can sustain the
minimum [OPS value for all clients at a given time. In this
situation, each client should be able to perform at or above its
minimum [OPS value. The system 100, however, can also be
provisioned such that the sum of the minimum IOPS across

5

10

15

20

25

30

35

40

45

50

55

60

65

12

all clients is such that the system 100 cannot sustain the
minimum [OPS for all clients. In this case, if the system
becomes overloaded through the use of all clients, the client’s
realized IOPS can be less than the client’s minimum IOPS
value. In failure situations, the system may also throttle users
such that their realized IOPS are less than their minimum
IOPS value. A maximum IOPS parameter is the maximum
sustained IOPS value over an extended period of time. The
max burst IOPS parameter is the maximum [OPS value that a
client can “burst” above the maximum IOPS parameter for a
short period of time based upon credits. In one implementa-
tion, credits for a client are accrued when the client is oper-
ating under their respective maximum [OPS parameter.
Accordingly, a client will only be able to use the system in
accordance with their respective maximum IOPS and maxi-
mum burst IOPS parameters. For example, a single client will
not be able to use the system’s full resources, even if they are
available, but rather, is bounded by their respective maximum
IOPS and maximum burst IOPS parameters.

As noted above, client QoS parameters can be changed at
any time by the client or an administrator. FIG. 2 depicts a
user interface 200 for setting client QoS in accordance with
one illustrative implementation. The user interface 200 can
include inputs that are used to change various QoS param-
eters. For example, slide bars 202 and/or text boxes 204 can
be used to adjust QoS parameters. As noted above in one
implementation, client QoS parameters include a minimum
IOPS, a maximum IOPS, and a maximum burst IOPS. Each
of these parameters can be adjusted with inputs, e.g., slide
bars and/or text boxes. In addition, the IOPS for different size
10 operations can be shown. In the user interface 200, the QoS
parameters associated with 4 k sized 10 operations are
changed. When any performance parameter is changed, the
corresponding IOPS for different sized 10 operations are
automatically adjusted. For example, when the burst param-
eter is changed, IOPS values 206 are automatically adjusted.
The updated values can be based upon a performance curve as
described in greater detail below. Once the QoS parameters
have been set, activating a save changes button 208 updates
the client’s QoS parameters. As described below, the target
performance manager 402 can use the updated QoS param-
eters, such that the updated QoS parameters take effect imme-
diately. The updated QoS parameters take effect without
requiring any user data to be moved in the system.

Performance Management

FIG. 3 depicts a simplified flowchart 300 of a method of
performing performance management according to one
implementation. Additional, fewer, or different operations of
the method 300 may be performed, depending on the particu-
lar embodiment. The method 300 can be implemented on a
computing device. In one implementation, the method 300 is
encoded on a computer-readable medium that contains
instructions that, when executed by a computing device,
cause the computing device to perform operations of the
method 300.

At 302, performance manager 114 determines a client load
based on one or more performance metrics. For example,
performance manager 114 may calculate a client’s load based
on different performance metrics, such as IOPS, bandwidth,
and latency. The metrics may be historical metrics and/or
current performance metrics. Historical performance may
measure previous performance for an amount of time, such as
the last week of performance metrics. Current performance
may be real-time performance metrics. Using these perfor-
mance metrics, e.g., system metrics and/or client metrics, a
load value is calculated. Example load values are described in
greater detail below.

US 9,054,992 B2

13

At 303, performance manager 114 gathers information
about health of the cluster. The health of the cluster may be
information that can quantify performance of the cluster, such
as a load value. The cluster health information may be gath-
ered from different parts of system 100, and may include
health in many different aspects of system 100, such as sys-
tem metrics and/or client metrics. In addition and as described
in greater detail below, cluster health information can be
calculated as a load value from the client and/or system met-
rics. As described in greater detail below, the health informa-
tion may not be cluster-wide, but may include information
that is local to the volume server 122 that is performing the
performance management. The cluster health may be
affected; for example, if there is a cluster data rebuild occur-
ring, total performance of the cluster may drop. Also, when
data discarding, adding or removing of nodes, adding or
removing of volumes, power failures, used space, or other
events affecting performance are occurring, performance
manager 114 gathers this information from the cluster.

At 304, performance manager 114 determines a target per-
formance value. For example, based on the load values and
client quality of service parameters, a target performance
value is determined. As will be described in more detail
below, the target performance value may be based on different
criteria, such as load values, client metrics, system metrics,
and quality of service parameters. The target performance
value is the value at which performance manager 114 would
like client 108 to operate. For example, the target perfor-
mance may be 110 IOPS.

At 306, performance manager 114 adjusts the performance
of client 108. For example, the future client performance may
be adjusted toward the target performance value. If IOPS are
being measured as the performance metric, the number of
IOPS a client 108 performs over a period of time may be
adjusted to the target performance value. For example,
latency can be introduced or removed to allow the number of
IOPS that a client can perform to fluctuate. In one example, if
the number of IOPS in the previous client performance is 80
and the target performance value is 110 IOPS, then the per-
formance of the client is adjusted to allow client 108 to
perform more IOPS such that the client’s performance moves
toward performing 110 IOPS.

Traditional provisioning systems attempt to achieve a qual-
ity of service by placing a client’s data on a system that should
provide the client with the requested quality of service. A
client requesting a change to their quality of service, there-
fore, can require that the client’s data be moved from one
system to another system. For example, a client that wants to
greatly increase its quality of service may need to be movedto
a more robust system to ensure the increased quality of ser-
vice. Unlike the traditional provisioning systems, the perfor-
mance manager can dynamically adjust quality of service for
specific clients without moving the client’s data to another
cluster. Accordingly, quality of service for a client can be
adjusted instantly, and a client can change QoS parameters
without requiring manual intervention for those QoS param-
eters to take effect. This feature allows the client to schedule
changes to their QoS parameters. For example, if a client
performs backups on the first Sunday of every month from
2:00 am-4:00 am, they could have their QoS parameters auto-
matically change just prior to the start of the backup and
change back after the backup finishes. This aspect allows a
client the flexibility to schedule changes to their QoS param-
eters based upon the client’s need. As another example, the
client can be presented with a turbo button. When selected,
the turbo button increases the client’s QoS parameters by
some factor, e.g., 3, 4, 5, etc., or to some large amount. Clients

10

15

20

25

30

35

40

45

50

55

60

65

14

could use this feature if their data needs were suddenly
increased, such as when a client’s website is experiencing a
high number of visitors. The client could then unselect the
turbo button to return to their original QoS parameters. Cli-
ents could be charged for how long they use the turbo button
features. In another implementation, the turbo button remains
in effect for a predetermined time before the client’s original
QoS parameters are reset.

In addition to the above examples, clients and/or adminis-
trators can set client QoS parameters based upon various
conditions. In addition, as noted above client QoS parameters
are not limited to IOPS. In different implementations, client
QoS parameters can be bandwidth, latency, etc. According to
different embodiments, the storage system may be configured
or designed to allow service providers, clients, administrators
and/or users, to selectively and dynamically configure and/or
define different types of QoS and provisioning rules which,
for example, may be based on various different combinations
of QoS parameters and/or provisioning/QoS target types, as
desired by a given user or client.

According to different embodiments, examples of client
QoS parameters may include, but are not limited to, one or
more of the following (or combinations there:

1OPS;

Bandwidth;

Write Latency;

Read Latency;

Write buffer queue depth;

1/0 Size (e.g., amount of bytes accessed per second);

1/0 Type (e.g., Read /Os, Write 1/Os, etc.);

Data Properties such as, for example, Workload Type (e.g.,
Sequential, Random); Dedupe-ability; Compressability;
Data Content; Data Type (e.g., text, video, images, audio,
etc.);

etc.

According to different embodiments, examples of various
provisioning/QoS target types may include, but are not lim-
ited to, one or more of the following (or combinations
thereof):

Service or group of Services;

Client or group of Clients;

Connection (e.g. Client connection);

Volume, or group of volumes;

Node or group of nodes;

Account/Client;

User;

iSCSI Session;

Time segment;

Read IOPS amount;

Write IOPS amount;

Application Type;

Application Priority;

Region of Volume (e.g., Subset of LBAs);

Volume Session(s);

1/0 size;

Data Property type;

etc.

FIG. 8 shows an example QoS Interface GUI 800 which
may be configured or designed to enable service providers,
users, and/or other entities to dynamically define and/or cre-
ate different performance classes of use and/or to define per-
formance/QoS related customizations in the storage system.
In at least one embodiment, the QoS Interface GUI may be
configured or designed to allow service providers, users, and/
or other entities dynamically switch between the different

US 9,054,992 B2

15

performance classes of use, allowing such clients to dynami-
cally change their performance settings on the fly (e.g., in
real-time).

For example, according to various embodiments, a service
provider may dynamically define and/or create different per-
formance classes of use in the storage system, may allow
clients to dynamically switch between the different perfor-
mance classes of use, allowing such clients to dynamically
modify or change their performance settings on the fly (e.g.,
in real-time). In at least one embodiment, the storage system
is configured or designed to immediately implement the
specified changes for the specified provisioning/QoS Targets,
and without requiring the client’s storage volume to be taken
off-line to implement the performance/QoS modifications. In
at least one embodiment, the different performance classes of
use may each have associated therewith a respective set of
QoS and/or provisioning rules (e.g., 810) which, for example,
may be based on various different combinations of QoS
parameters and/or provisioning/QoS target types.

The above process for performing performance manage-
ment may be performed continuously over periods of time.
For example, a period of 500 milliseconds is used to evaluate
whether performance should be adjusted. As will be
described in more detail below, client 108 may be locked out
of performing IOPS for a certain amount of time each period
to reduce or increase the number of IOPS being performed.

Examples of different types of conditions, criteria and/or
other information which may be used to configure the QoS
Interface GUI of FIG. 8 may include, but are not limited to,
one or more of the following (or combinations thereof):

Example Boundary Conditions (e.g., 824)

LOAD(Service); Date
LOAD(Read); Read IOPS
LOAD(Write); Write IOPS

LOAD(Write_ Buffer);
LOAD(Client-Read);
LOAD(Client-Write);
LOAD(Client);

Application Type
Application Priority
Region of Volume
LBAID

LOAD(Cluster); Volume Session ID
LOAD(System) Connection ID
Write Latency; VO size

Read Latency; O Type

Write buffer queue depth; Workload Type
LOAD(Client); Dedupe-ability
Volume ID Compressability
Group ID Data Content
Account ID Data Type

Client ID Data Properties
User ID Detectable Condition and/or Event
iSCSI Session ID Etc.

Time

Example QoS Parameters (e.g., 842)

MAX IOPS MAX Read I/O
MIN IOPS MIN Read /O
BURST IOPS BURST Read VO
MAX Bandwidth MAX Write VO
MIN Bandwidth MIN Write /O
BURST Bandwidth BURST Write /O
MAX Latency I/O Type

MIN Latency Workload Type
BURST Latency Dedupe-ability
MAX T/O Size Compressability
MIN IO Size Data Content
BURST I/O Size Data Type

O Type Billing Amount

20

35

40

45

50

55

60

65

16
Example Provisioning/QoS Targets (e.g., 844)

Cluster ID Time

Service ID Date

Client ID Read IOPS
Connection ID Write IOPS

Node ID Application Type
Volume ID Application Priority
Group ID Region of Volume
Account ID LBAID

Client ID Volume Session ID
User ID Connection ID
iSCSI Session ID VO size

I/O Type Data Content
Workload Type Data Type
Dedupe-ability Data Properties
Compressability Etec.

Example Operators (e.g., 826, 846)

Equal To Not Equal To
Less Than Contains

Greater Than Does Not Contain
Less Than or Equal To Matches

Greater Than or Equal To
Within Range of

Regular Expression(s)

Example Threshold Values (e.g., 828, 848)

Alpha-numeric value(s) Random Type
Numeric value(s) Text Type
Numeric Range(s) Video Type
Numeric value per Time Interval Audio Type
value (e.g., 5000 IOPS/sec) Image Type

Sequential Type Performance Class of Use Value

Example Boolean Operators (e.g., 825, 845)

AND NAND
OR NOR
XOR XNOR
NOT

EXCEPT

The following example scenarios help to illustrate the vari-
ous features and functionalities enabled by the QoS Interface
GUI 800, and help to illustrate the performance/QoS related
provisioning features of the storage system:

Example A

Configuring/provisioning the storage system to automati-
cally and/or dynamically increase storage performance to
enable a backup to go faster during a specified window of
time. For example, in one embodiment, the speed of a volume
backup operation may be automatically and dynamically
increased during a specified time interval by causing a MAX
IOPS value and/or MIN 1OPS value to be automatically and
dynamically increased during that particular time interval.

Example B

Configuring/provisioning the storage system to automati-
cally and/or dynamically enable a selected initiator to per-
form faster sequential 10s from 10 pm to Midnight.

Example C
Configuring/provisioning the storage system to automati-

cally and/or dynamically enable a selected application to have
increased 1/O storage performance.

US 9,054,992 B2

17
Example D

Configuring/provisioning the storage system to automati-
cally and/or dynamically enable a selected group of clients to
have their respective MAX, MIN and BURST IOPS double
on selected days/dates of each month.

Example E

Configuring/provisioning the storage system to present a
client or user with a “Turbo Boost” interface which includes
a virtual Turbo Button. Client may elect to manually activate
the Turbo Button (e.g., on the fly or in real-time) to thereby
cause the storage system to automatically and dynamically
increase the level of performance provisioned for that Client.
For example, in one embodiment, client activation of the
Turbo Button may cause the storage system to automatically
and dynamically increase the client’s provisioned perfor-
mance by a factor of 3x for one hour. In at least one embodi-
ment, the dynamic increase in provisioned performance may
automatically cease after a predetermined time interval. In at
least one embodiment, the storage system may be configured
or designed to charge the client an increased billing amount
for use of the Turbo Boost service/feature.

Example F

Configuring/provisioning the storage system to automati-
cally and/or dynamically charge an additional fee or billing
amount for dynamically providing increased storage array
performance (e.g., to allow a faster backup) to go faster at a
particular time.

Example G

Configuring/provisioning the storage system to automati-
cally and/or dynamically charge an additional fee or billing
amount for IOPS and/or /O access of the storage system
which exceeds minimum threshold value(s) during one or
more designated time intervals.

Performance manager 114 may use different ways of
adjusting performance. FIG. 4 depicts a more detailed
example of adjusting performance using performance man-
ager 114 according to one implementation. A target perfor-
mance manager 402 determines a target performance value.
In one implementation, target performance manager 402 uses
the client’s QoS parameters, system metrics, and client met-
rics to determine the target performance value. As will be
described in greater detail below, system metrics and client
metrics can be used to determine the system load and client
load. As an example, client load can be measured based on a
client metrics, such as in IOPS, bytes, or latency in millisec-
onds.

In one implementation, system metrics are data that quan-
tifies the current load of the cluster. As will be described in
greater detail below, various system load values can be cal-
culated based upon the system metrics. The load values can be
normalized measures of system load. For example, different
load values can be compared to one another, even if the load
values use different metrics in their calculations. As an
example, system load can be expressed in a percentage based
onthe current load of the cluster. In one example, a cluster that
is overloaded with processing requests may have a lower
value than when the system is not overloaded. In another
implementation, the target performance manger 402 receives
calculated load values as input, rather than system and/or
client metrics.

25

30

35

40

45

18

The target performance manager 402 can read the client
QoS parameters, relevant system metrics, and relevant client
metrics. These values can be used to determine the target
performance value for client 108. The QoS parameters may
also be dynamically adjusted during runtime by the adminis-
trator or the client as described above, such as when a higher
level of performance is desired (e.g., the customer paid for a
higher level of performance). The calculation of the target
performance value is explained in greater detail below.

In one implementation, the target performance manager
402 outputs the target performance value to a proportion-
integral-derivative (PID) controller block 404. PID controller
block 404 may include a number of PID controllers for dif-
ferent performance metrics. Although PID controllers are
described, other controllers may be used to control the per-
formance of clients 108. In one example, PID controller block
404 includes PID controllers for IOPS, bandwidth, and
latency. Target performance manager 402 outputs different
target performance values for the performance metrics into
the applicable PID controllers. The PID controllers also
receive information about previous and/or current client per-
formance and the target performance value. For example, the
PID controllers can receive client metrics, system metrics,
and/or load values, that correspond with the target perfor-
mance value. The PID controller can then determine a client
performance adjustment value. For example, a PID controller
is configured to take feedback of previous client performance
and determine a value to cause a system to move toward the
target performance value. For example, a PID can cause var-
ied amounts of pressure to be applied, where pressure in this
case causes client 108 to slow down, speed up or stay the same
in performing IOPS. As an example, if the target performance
value is 110 IOPS and client 108 has been operating at 90
IOPS, then the client performance adjustment value is output,
which by being applied to the client 108 should increase the
number of IOPS being performed.

In one implementation, PID controller block 404 outputs a
performance adjustment value. As an example, the perfor-
mance adjustment value can be a pressure value that indicates
an amount of time that the client is locked out performing 10
operations within the storage system. This lock out time will
cause client performance to move toward the target perfor-
mance value. For example, a time in milliseconds is output
that is used to determine how long to lock a client 108 out of
a volume. Locking a client out of performing 1O operations
artificially injects latency into the client’s 10 operations. In
another of implementations, the performance adjustment
value can be a number of 10 operations that the client can
perform in a period of time. If the client attempts to do more
10 operations, the client can be locked out of doing those 10
operations until a subsequent period of time. Locking client
108 out of the volume for different times changes the number
of IOPS performed by client 108. For example, locking client
108 out of the volume for shorter periods of time increases the
number of IOPS that can be performed by client 108 during
that period.

A performance controller 406 receives the performance
adjustment value and outputs a client control signal to control
the performance of client 108. For example, the amount of
lockout may be calculated and applied every half second. In
one implementation, clients 108 are locked out by closing and
opening a command window, such as an Internet small com-
puter system interface (iISCSI) command window. Closing
the command window does not allow a client 108 to issue
access requests to a volume and opening the command win-
dow allows a client 108 to issue access requests to the volume.
Locking clients 108 out of a volume may adjust the number of

US 9,054,992 B2

19

IOPS, bandwidth, or latency for client 108. For example, if a
client 108 is locked out of a volume every 50 milliseconds of
every 500 milliseconds as compared to being locked out of the
volume for 450 milliseconds of every 500 milliseconds, the
client may issue more IOPS. For a bandwidth example, if
bandwidth is constrained, then client 108 is locked out of a
volume for a longer period of time to increase available band-
width. In another implementation, the amount of data that is
being serviced at a time is modified, either to zero or some
number, to affect the performance at which the system ser-
vices that client’s 10.

As described above, IOPS are metrics that can be used to
manage performance of a client. IOPS include both write
IOPS and read IOPS. Individual input/output operations do
not have a set size. That is, an input operation can be writing
64% of data to a drive, while another input operation can be
writing 4k of data to the drive. Accordingly, capturing the raw
number of input/output operations over a period of time does
not necessarily capture how expensive the IO operation actu-
ally is. To account for this situation, an input/output operation
can be normalized based upon the size of the [/O operation.
This feature allows for consistent treatment of IOPS, regard-
less of each operation’s size of the data. This normalization
can be achieved using a performance curve. FIG. 5 depicts a
performance curve 500 comparing the size of input/output
operations with system load in accordance with an illustrative
implementation. Line 504 indicates the system at full load,
while line 502 indicates the load of the system for 1O opera-
tions of differing sizes. The performance curve can be deter-
mined based upon empirical data of the system 100. The
performance curve allows IOPS of different sizes to be com-
pared and to normalize IOPS of different sizes. For example,
an [OP of'size 32 k is roughly five times more costly than a 4
k IOP. That is, the number of IOPS of size 32 k to achieve
100% load of a system is roughly 20% of the number of IOPS
of'size 4 k. This is because larger block sizes have a discount
of doing IP and not having to process smaller blocks of data.
Invarious implementations, this curve can be used as a factor
in deciding a client’s target performance value. For example,
if the target performance value for a client is determined to be
1,000 IOPS, this number can be changed based upon the
average size of 1Os the client has done in the past. As an
example, if a client’s average 10 size is 4 k, the client’s target
performance value can remain at 1,000 IOPS. However, if the
client’s average 10 size is determined to be 32 k, the client’s
target performance value can be reduced to 200 IOPS, e.g.,
1,000*0.2. The 200 IOPS of'size 32 k is roughly equivalent to
1,000 IOPS of size 4 k.

In determining a target performance value, the target per-
formance manager 402 uses a client’s QoS parameters to
determine the target performance value for a client. In one
implementation, an overload condition is detected and all
clients are throttled in a consistent manner. For example, if the
system load is determined to be at 20%, all clients may be
throttled such that their target performance value is set to 90%
of their maximum IOPS setting. If the system load increases
to 50%, all clients can be throttled based upon setting their
target performance value to 40% of their maximum [OPS
setting. Additional examples of how overload conditions are
determined are provided below.

Clients do not have to be throttled in a similar manner. For
example, clients can belong to different classes ofuses. Inone
implementation, classes of uses can be implemented simply
by setting the QoS parameters of different clients differently.
For example, a premium class of use could have higher QoS
parameters, e.g., min IOPS, max IOPS, and burst IOPS, val-
ues compared to a normal class of use. In another implemen-

20

30

40

45

60

20

tation, the class of use can be taken into account when calcu-
lating the target performance value. For example, taking two
different classes, one class could be throttled less than the
other class. Using the example scenario above, clients
belonging to the first class could be throttled 80% of their
maximum [OPS value when the system load reaches 20%.
The second class of clients, however, may not be throttled at
all or by a different amount, such as 95% of their maximum
1OPS value.

In another implementation, the difference between a cli-
ent’s minimum IOPS and maximum IOPS can be used to
determine how much to throttle a particular client. For
example, a client with a large difference can be throttled more
than a client whose difference is small. In one implementa-
tion, the difference between the client’s maximum IOPS and
minimum [OPS is used to calculate a factor that is applied to
calculate the target performance value. In this implementa-
tion, the factor can be determined as the IOPS difference
divided by some predetermined IOPS amount, such as 5,000
IOPS. In this example, a client whose difference between
their maximum IOPS and their minimum IOPS was 10,000,
would be throttled twice as much as a client whose IOPS
difference was 5,000. Clients of the system can be billed
different amounts based upon their class. Accordingly, clients
could pay more to be throttled later and/or less than other
classes of clients.

In another implementation, throttling of clients can be
based upon the client’s use of the system. In this implemen-
tation, the target performance manager 402 can review sys-
tem metrics to determine what metrics are currently over-
loaded. Next, the client metrics can be analyzed to determine
if that client is contributing to an overloaded system value.
For example, the target performance manager 402 can deter-
mine that the system is overloaded when the cluster’s write
latency is overloaded. The read/write IOPS ratio for a client
can be used to determine if a particular client is having a
greater impact on the overload condition. Continuing this
example, a client whose read/write IOPS ratio was such that
the client was doing three times more writes than reads and
was doing 1,500 writes would be determined to be negatively
impacting the performance of the cluster. Accordingly, the
target performance manager 402 could significantly throttle
this client. In one implementation, this feature can be done by
calculating a factor based upon the read/write IOPS ratio.
This factor could be applied when calculating the target per-
formance value, such that the example client above would be
throttled more than a client whose read/write IOPS ratio was
high. In this example, a high read/write IOPS ratio indicates
that the client is doing more reads than writes. The factor can
also be based upon the number of IOPS that each client is
doing. In addition, the number of IOPS for a particular client
can be compared to the number of IOPS for the cluster, such
that an indication of how heavily a particular client is using
the cluster can be determined Using this information, the
target performance manager can calculate another factor than
can be used to scale the target performance value based upon
how much a client is using the system compared to all other
clients.

FIG. 6 depicts a simplified flowchart of a method 600 of
performing performance management that matches an over-
loaded system metric with a client metric in accordance with
one illustrative implementation. Additional, fewer, or differ-
ent operations of the method 600 may be performed, depend-
ing on the particular embodiment. The method 600 can be
implemented on a computing device. In one implementation,
the method 600 is encoded on a computer-readable medium

US 9,054,992 B2

21

that contains instructions that, when executed by a computing
device, cause the computing device to perform operations of
the method 600.

In an operation 602, client metrics can be determined. For
example, a performance manager 114 can determine client
metrics, as described above, for a preceding period of time,
e.g.,100ms, 1s, 10 s, etc. In an operation 604, system metrics
can be determined. For example, the performance manager
114 or another process can determine system metrics as
described above. In one implementation, the client metrics
and/or system metrics are used to calculate one or more load
values. The calculation of load values is described in greater
detail below. In an operation 606, the target performance
manager 402 can then determine if the system is overloaded
in way based upon various load values. For example, the
target performance manager 402 can determine if a system is
overloaded by comparing system load values with corre-
sponding thresholds. Any load value above its corresponding
threshold indicates an overload condition. In one implemen-
tation, the system load values are analyzed in a prioritized
order and the first overloaded load value is used to determine
how to throttle clients.

In an operation 608, one or more corresponding client
metrics associated with the overloaded load value are deter-
mined. For example, if the overloaded system load is the
number of read operations, the client’s number of read opera-
tions can be used as the associated client metric. The client’s
metric does not have to be the same as the overloaded system
metric. As another example, if the overloaded system load is
read latency, the corresponding client metrics can be the ratio
of read to write IO operations and the total number of read
operations for a client. In an operation 610, a client-specific
factor is determined based upon the client metric associated
with the overloaded system load value. In the first example
above, the factor can be the number of the client’s read opera-
tions divided by the total number of read operations of the
cluster. The client factor, therefore, would be relative to how
much the client is contributing to the system load value.
Clients that were dong a relatively larger number of reads
would have a greater client metric compared with a client that
was doing a relatively smaller number of reads.

In an operation 612, the client-specific factor is used to
calculate the target performance value for the client. In one
implementation, an initial target performance value can be
calculated and then multiplied by the client specific factor. In
another implementation, a cluster reduction value is deter-
mined and this value is multiplied by the client specific factor.
Continuing the example above, the cluster reduction value
can be the number of read IOPS that should be throttled.
Compared to throttling each client equally based upon the
cluster reduction value, using the client-specific factor results
in the same number of read IOPS that are throttled, but clients
who have a large number of read IO operations are throttled
more than clients who have a smaller number of read 10
operations. Using client-specific factors helps the target per-
formance manager 402 control the throttling of clients to help
ensure that the throttling is effective. For example, if client-
specific factors were not used and throttling was applied
equally across all clients, a client whose use of the system was
not contributing to the system’s overloading would be unnec-
essarily throttled. Worse, the throttling of all of the clients
might not be as effective since the throttling of clients who did
not need to be throttled would not help ease the overloading
condition, which could result in even more throttling being
applied to clients.

20

40

45

55

22

In an operation 614, the performance manager 114 can
adjust the performance of client 108. For example, the client’s
use of the system can be throttled as described above.

Using the above system, clients 108 may be offered per-
formance guarantees based on performance metrics, such as
IOPS. For example, given that system 100 can process a total
number of IOPS, the total number may be divided among
different clients 108 in terms of a number of IOPS within the
total amount. The IOPS are allocated using the min, max, and
burst. If it is more than the total then possible, the adminis-
trator is notified that too many IOPS are being guaranteed and
instructed to either add more performance capacity or change
the IOP guarantees. This notification may be before a capac-
ity threshold is reached (e.g., full capacity or a pre-defined
threshold below full capacity). The notification can be sent
before the capacity is reached because client performance is
characterized in terms of IOPS and the administrator can be
alerted that performance is overprovisioned by N number of
IOPS. For example, clients 108 may be guaranteed to be
operating between a minimum and maximum number of
IOPS over time (with bursts above the maximum at certain
times). Performance manager 114 can guarantee perfor-
mance within these QoS parameters using the above system.
Because load is evenly distributed, hot spots will not occur
and system 100 may operate around the total amount of IOPS
regularly. Thus, without hot spot problems and with system
100 being able to provide the total amount of IOPS regularly,
performance may be guaranteed for clients 108 as the number
of TOPS performed by clients 108 are adjusted within the total
to make sure each client is operating within the QoS param-
eters for each given client 108. Since each client’s effecton a
global pool of performance is measured and predictable, the
administrator can consider the entire cluster’s performance as
a pool of performance as opposed to individual nodes, each
with its own performance limits. This feature allows the clus-
ter to accurately characterize its performance and guarantee
its ability to deliver performance among all of its volumes.

Accordingly, performance management is provided based
on the distributed data architecture. Because data is evenly
distributed across all drives in the cluster, the load of each
individual volume is also equal across every single drive in
storage system 100. This feature may remove hot spots and
allow performance management to be accurate and fairly
provisioned and to guarantee an entire cluster performance
for individual volumes.

Load Value Calculations

Load values can be used to determine if a client should be
throttled to help ensure QoS among all clients. Various load
values can be calculated based upon one or more system
metric and/or client metric. As an example, a load value can
be calculated that corresponds to a client’s data read latency.
When calculating a load value that corresponds with a client,
how the client’s data is managed on the storage system
becomes important.

FIG. 9 shows a portion of a storage system in accordance
with one illustrative implementation. In the specific example
embodiment of FIG. 9, the storage system is shown to include
acluster 910 of nodes (912, 914, 916, and 918). According to
different embodiments, each node may include one or more
storage devices such as, for example, one or more solid state
drives (SSDs). In the example embodiment of FIG. 9, it is
assumed for purposes of illustration that three different cli-
ents (e.g., Client A 902, Client B 904, and Client C 906) are
each actively engaged in the reading/writing of data from/to
storage cluster 910.

Additionally, as illustrated in the example embodiment of
FIG. 9, each node may have associated therewith one or more

US 9,054,992 B2

23

services (e.g., Services A-H), wherein each service may be
configured or designed to handle a particular set of functions
and/or tasks. For example, as illustrated in the example
embodiment of FIG. 9: Services A and B may be associated
with (and/or may be handled by) Node 1 (912); Services C
and D may be associated with (and/or may be handled by)
Node 2 (914); Service E may be associated with (and/or may
be handled by) Node 3 (916); Services F, G, H may be asso-
ciated with (and/or may be handled by) Node 4 (918). In at
least one embodiment, one or more of the services may be
configured or designed to implement a slice server. A slice
server can also be described as providing slice service func-
tionality.

Additionally, according to different embodiments, a given
service may have associated therewith at least one primary
role and further may have associated therewith one or more
secondary roles. For example, in the example embodiment of
FIG. 9, it is assumed that Service A has been configured or
designed to include at least the following functionality: (1) a
primary role of Service A functions as the primary slice
service for Client A, and (2) a secondary role of Service A
handles the data/metadata replication tasks (e.g., slice service
replication tasks) relating to Client A, which, in this example
involves replicating Client A’s write requests (and/or other
slice-related metadata for Client A) to Service C. Thus, for
example, in one embodiment, write requests initiated from
Client A may be received at Service A 9024, and in response,
Service A may perform and/or initiate one or more of the
following operations (or combinations thereof):

process the write request at Service A’s slice server, which,
for example, may include generating and storing related
metadata at Service A’s slice server;

(if needed) cause the data (of the write request) to be saved
in a first location of block storage (e.g., managed by
Service A);

forward (9025) the write request (and/or associated data/
metadata) to Service C for replication.

In at least one embodiment, when Service C receives a
copy of the Client A write request, it may respond by process-
ing the write request at Service C’s slice server, and (if
needed) causing the data (of the write request) to be saved in
a second location of block storage (e.g., managed by Service
C) for replication or redundancy purposes. In at least one
embodiment, the first and second locations of block storage
may each reside at different physical nodes. Similarly Service
A’s slice server and Service C’s slice server may each be
implemented at different physical nodes.

Accordingly, in the example embodiment of FIG. 9, the
processing of a Client A write request may involve two dis-
tinct block storage write operations—one initiated by Service
A (the primary Service) and another initiated by Service C
(the redundant Service). On the other hand, the processing of
a Client A read request may only be handled by Service A
(e.g., under normal conditions) since Service A is without
involving Service C) since Service A is able to handle the read
request without necessarily involving Service C.

For purposes of illustration, in the example embodiment of
FIG. 9, it is also assumed that Service E has been configured
or designed to include at least the following functionality: (1)
a primary role of Service E functions as the primary slice
service for Client B, and (2) a secondary role of Service E
handles the data and/or metadata replication tasks (e.g., slice
service replication tasks) relating to Client B, which, in this
example involves replicating Client B’s write requests (and/
or other Slice-related metadata for Client B) to Service D.
Thus, for example, in one embodiment, write requests initi-
ated from Client B may be received at Service E 904a, and in

5

15

20

25

30

35

40

45

50

55

60

65

24

response, Service E may perform and/or initiate one or more
of the following operations (or combinations thereof):
process the write request at Service E’s slice server, which,
for example, may include generating and storing related
metadata at Service E’s slice server;

(if needed) cause the data (of the write request) to be saved
in a first location of block storage (e.g., managed by
Service E);

forward (9045) the write request (and/or associated data/
metadata) to Service D for replication.

In at least one embodiment, when Service D receives a
copy of the Client B write request, it may respond by process-
ing the write request at Service D’s slice server, and (if
needed) causing the data (of the write request) to be saved in
a second location of block storage (e.g., managed by Service
D) for replication or redundancy purposes. In at least one
embodiment, the first and second locations of block storage
may each reside at different physical nodes. Similarly Service
E’s slice server and Service D’s slice server may each be
implemented at different physical nodes.

According to different embodiments, it is also possible to
implement multiple replication (e.g., where the data/meta-
data is replicated at two or more other locations within the
storage system/cluster). For example, as illustrated in the
example embodiment of FIG. 9, it is assumed that Service E
has been configured or designed to include at least the fol-
lowing functionality: (1) a primary role of Service E functions
as the primary slice service for Client C, (2) a secondary role
of Service E handles the data and/or metadata replication
tasks (e.g., slice service replication tasks) relating to Client C,
which, in this example involves replicating Client C’s write
requests (and/or other Slice-related metadata for Client C) to
Service C; and (3) a secondary role of Service E handles the
data and/or metadata replication tasks (e.g., slice service rep-
lication tasks) relating to Client C, which, in this example
involves replicating Client C’s write requests (and/or other
Slice-related metadata for Client C) to Service G. Thus, for
example, in one embodiment, write requests initiated from
Client C may be received at Service E 906a, and in response,
Service E may perform and/or initiate one or more of the
following operations (or combinations thereof):

process the write request at Service E’s slice server, which,
for example, may include generating and storing related
metadata at Service E’s slice server;

(if needed) cause the data (of the write request) to be saved
in a first location of block storage (e.g., managed by
Service E);

forward (9065) the write request (and/or associated data/
metadata) to Service C for replication;

forward (906¢) the write request (and/or associated data/
metadata) to Service G for replication.

In at least one embodiment, when Service C receives a
copy of the Client C write request, it may respond by process-
ing the write request at Service C’s slice server, and (if
needed) causing the data (of the write request) to be saved in
a second location of block storage (e.g., managed by Service
C) for replication or redundancy purposes. Similarly, In at
least one embodiment, when Service G receives a copy of the
Client C write request, it may respond by processing the write
request at Service G’s slice server, and (if needed) causing the
data (of the write request) to be saved in a third location of
block storage (e.g., managed by Service G) for replication or
redundancy purposes.

Load Values and Quality of Service (QoS) Analysis

According to different embodiments, the QoS functional-
ity of the storage system may use as input various load values
determined from system metrics and/or client metrics. For

US 9,054,992 B2

25

example, in one embodiment, the storage system may be
configured or designed to measure, track, and/or analyze
system resources that are used or are impacted for read and/or
write operations to help determine the degree to which one or
more system resources may be loaded, stressed and/or over-
loaded.

In at least one embodiment, different types of metrics can
be used to calculate load values that can be used to express the
degree to which one or more system resources (e.g., nodes,
components, services, etc.) are loaded, stressed and/or over-
loaded. For example, in at least one embodiment, one or more
different types of load values may be automatically and/or
dynamically calculated to express or quantify the relative
degrees to which various types system resources may be
loaded, stressed and/or overloaded. Examples of various
types of load values may include, but are not limited to, one or
more of the following (or combinations thereof):

LOAD(Service) which, for example, may express the rela-
tive degree or amount of system resource load or stress
relating to an identified Service running at the system.
According to different embodiments, the LOAD(Ser-
vice) value may be automatically and/or dynamically
calculated (e.g., in real-time) based, at least partially, on
measured amount(s) of read latency and/or write latency
relating to read and/or write operations associated with
the identified Service. In at least one embodiment where
the Service has been assigned to handle read/write
operations from multiple Clients, the LOAD(Service)
value may reflect read latencies and/or write latencies
attributable to read/write operations associated with the
multiple Clients to which the Service has been assigned.

LOAD(Read) which, for example, may express the relative
degree or amount of system resource load or stress relat-
ing to Read IOPS. According to different embodiments,
the LOAD(Read) value may be automatically and/or
dynamically calculated (e.g., in real-time) based, at least
partially, on measured amount(s) of system latency
relating to Read IOPS. According to different embodi-
ments, the LOAD(Read) metric may be configured to
express the relative degree or amount of system resource
load or stress relating to Read IOPS which are associated
with one or more of the following (or combinations
thereof): an identified Service, a group of identified Ser-
vices, an identified Client, an identified connection (e.g.,
Client connection), an identified volume (or portion
thereof), an identified group of volumes, an identified
node, an identified group of nodes, and/or other specifi-
cally identified system resources.

LOAD(Write) which, for example, may express the rela-
tive degree or amount of system resource load or stress
relating to Write IOPS. According to different embodi-
ments, the LOAD(Write) value may be automatically
and/or dynamically calculated (e.g., in real-time) based,
at least partially, on measured amount(s) of system
latency relating to Write IOPS. According to different
embodiments, the LOAD(Write) metric may be config-
ured to express the relative degree or amount of system
resource load or stress relating to Write IOPS which are
associated with one or more of the following (or com-
binations thereof): an identified Service, a group ofiden-
tified Services, an identified Client, an identified con-
nection (e.g., Client connection), an identified volume
(or portion thereof), an identified group of volumes, an
identified node, an identified group of nodes, and/or
other specifically identified system resources.

LOAD(Write_Buffer) which, for example, may express
the relative amount of write buffer cache capacity being

5

10

15

20

25

30

40

45

50

55

60

o
o

26
used. According to different embodiments, the LOAD
(Write_Buffer) value may be automatically and/or
dynamically calculated (e.g., in real-time) based, at least
partially, on the percentage of fullness of the write buffer
cache.

LOAD(Client) which, for example, may express the rela-
tive degree or amount of system resource load or stress
relating to IO activities associated with the Service(s)
(e.g., primary Service and secondary Service(s)) which
have been assigned to handle read, write and replication
operations for the identified Client. According to differ-
ent embodiments, the LOAD(Client) value may be auto-
matically and/or dynamically calculated (e.g., in real-
time) based, at least partially, on measured amount(s) of
read latency and/or write latency relating to the
Service(s) which have been assigned to handle read,
write and replication operations for the identified Client.

LOAD(Client-Read) which, for example, may express the
relative degree or amount of system resource load or
stress relating to IO activities associated with the
Service(s) which have been assigned to handle read
operations for the identified Client. According to differ-
ent embodiments, the LOAD(Client-Read) value may
be automatically and/or dynamically calculated (e.g., in
real-time) based, at least partially, on measured
amount(s) of read latency relating to the Service(s)
which have been assigned to handle 10 operations for
the identified Client.

LOAD(Client-Write) which, for example, may express the
relative degree or amount of system resource load or
stress relating to IO activities associated with the
Service(s) which have been assigned to handle Write
operations for the identified Client. According to differ-
ent embodiments, the LOAD(Client-Write) value may
be automatically and/or dynamically calculated (e.g., in
real-time) based, at least partially, on measured
amount(s) of write latency relating to the Service(s)
which have been assigned to handle 10 operations for
the identified Client.

LOAD(Resource) which, for example, may express the
relative degree or amount of system load or stress relat-
ing to the identified Resource (e.g., cache memory, disk
storage space, cluster storage space, etc.). According to
different embodiments, the LOAD(Resource) value
may be automatically and/or dynamically calculated
(e.g., in real-time) (e.g., in real-time) based, at least
partially, on resource availability/usage characteristics
and/or performance characteristics relating to one or
more of the following (or combinations thereof): cluster
level metrics and/or drive level metrics, read latency,
write latency, input/output operations per second
(IOPS), read IOPS, write IOPS, I/O size, write cache
capacity, dedupe-ability, compressibility, total band-
width, read bandwidth, write bandwidth, read/write
ratio, workload type, data content, data type, etc. LOAD
(System) which, for example, may express the relative
degree or amount of system load or stress relating to a
selected portion of the storage system.

LOAD(DSU-Service) which, for example, may express
the relative amount of disk space utilization (DSU) for
an identified Service.

LOAD(DSU-Cluster) which, for example, may express the
relative amount of disk space utilization (DSU) for an
identified Storage Cluster.

US 9,054,992 B2

27

LOAD(Cluster) which, for example, may express the rela-
tive degree or amount of system load or stress relating to
an identified Storage Cluster (e.g., Storage Cluster 910,
FIG.9)

As shown above, a client load value can be calculated based
upon both the read latency and the write latency metrics of the
client. In addition, separate client load values can be calcu-
lated based on read latency and write latency metrics. In at
least one embodiment, one or more aspects relating to QoS
management may be initiated and/or facilitated by monitor-
ing and differentiating between read-related IOPS and write-
related IOPS (e.g., for a given Client, Service, and/or group of
Services). For example, in one embodiment, to facilitate QoS
implementation for read-related operations relative to a given
service (e.g., Service A), read latency of the volumes associ-
ated with Service A may be monitored and/or measured. In
one embodiment, read latency of given volume may be cal-
culated or determined based on the amount of time it takes for
the system to internally service and complete a data read
operation(s) conducted between the identified service (e.g.,
slice service) and the corresponding block service from
which the data is read.

To initiate and/or facilitate QoS implementation for write-
related operations relative to a given service (e.g., Service A),
write latency of the volumes associated with Service A may
be monitored and/or measured. In one embodiment, write
latency of given volume may be calculated or determined
based on the amount of time it takes for the system to inter-
nally service and complete the data write operation(s) con-
ducted between the identified service (e.g., slice service) and
the corresponding block service to which the data is written.

In at least one embodiment, to facilitate QoS implementa-
tion for write-related operations relative to a given Client
(e.g., Client A 902), write latency of the Services (e.g., Ser-
vice A, Service C) associated with Client A may be monitored
and/or measured. For example, in one embodiment, write
latency for a given Client may be calculated or determined
based on the amount of time it takes for the system to inter-
nally service and complete the associated data write
operation(s), which may include, for example: (i) the data
write operation(s) handled by the primary slice service (e.g.,
Service A), and (ii) the data write operation(s) handled by
each of the secondary (e.g., replication) service(s) (e.g., Ser-
vice C).

In at least some embodiments, the degree or amount (e.g.,
percentage) of available write buffer cache capacity (for one
or more identified nodes) may also be used or taken into
account when performing write latency measurements/calcu-
lations. For example, for at least some write-related opera-
tions, the storage system may utilize one or more write
cache(s) (or write buffers) which, for example, may be imple-
mented using fast-write memory (e.g., such as that associated
with battery backed RAM, Marvell™ card, etc.). In at least
one embodiment, the storage system may monitor the size or
amount of queued writes stored on the write cache(s), and use
this information to proactively manage throttle clients.

For example, in one embodiment, as the load value asso-
ciated with the amount of data in a given write cache
approaches or exceeds predefined threshold limits, the stor-
age system automatically and/or dynamically identify and/or
implement appropriate procedures to help maintain QoS stan-
dards such as, for example, by applying back pressure during
conditions when it is detected or determined that the data
flushing process (e.g., from slice service write cache to block
storage) cannot keep up with incoming client writes. In some
embodiments, the system may apply back pressure only to a

20

25

30

35

40

45

65

28

subset of nodes and/or volumes which have been identified as
having write caches which meet or exceed predefined thresh-
old limits.

According to different embodiments, various examples of
procedures which may be automatically and/or dynamically
initiated and/or implemented by the storage system may
include, but are not limited to, one or more of the following
(or combinations thereof):

Temporarily throttling read and write IOPS for one or more
selected services, nodes, volumes, clients, and/or con-
nections;

Temporarily throttling read-related IOPS for one or more
selected services, nodes, volumes, clients, and/or con-
nections;

Temporarily throttling write-related IOPS for one or more
selected services, nodes, volumes, clients, and/or con-
nections;

Deferring internal message requests between one or more
selected services, nodes, volumes, clients, and/or con-
nections;

and/or other types of actions/activities which may help
reduce or alleviate the relative degree or amount of sys-
tem resource load or stress.

Example Load Calculations

According to different embodiments, various types of tech-
niques and/or computer-implemented algorithms may be
used for dynamically calculating desired LOAD values. By
way ofillustration, several different example embodiments of
LOAD calculation techniques are described below with ref-
erence to the example system embodiment illustrated in FIG.
9.

Example LOAD Calculation Technique A

In one embodiment, referring to the example system
embodiment illustrated in FIG. 9, respective LOAD(Client)
values may be automatically and/or dynamically calculated
according to:

LOAD(Client 4)=a*LOAD(Service 4)+b* LOAD(Ser-
vice C);

LOAD(Client B)=c*LOAD(Service E)+d*LOAD(Ser-
vice D);

LOAD(Client C)=e*LOAD(Service E)+/*LOAD(Ser-
vice C+g*LOAD(Service G);
where: a, b, ¢ are weighted variables (e.g., weighted coeffi-
cients) each having a respective value between 0 and 1; and
where: a+b=1, c+d=1, and e+g+f=1.

In at least one embodiment, the value of coefficients may
be automatically and/or dynamically adjusted (e.g., in real-
time) based, for example, on measured percentages of Read/
Write workloads.

In one embodiment, referring to the example system
embodiment illustrated in FIG. 9, LOAD(Service) value(s)
for an identified service (Service_ID) may be automatically
and/or dynamically calculated according to:

LOAD(Service_ID)=h*LOAD(Read@Service__ID)+
J¥*LOAD(Write@Service__ID)+k*LOAD(Write
Buffer@Service_ID)+m*LOAD(DSU-Service__
D)

where:

h, j, k, m are weighted variables (e.g., weighted coeffi-
cients) each having a respective value between 0 and 1;
and where: h+j+k+m=1;

LOAD(Read@Service_ID) represents a normalized value
(e.g., between 0-1) which expresses the relative degree

US 9,054,992 B2

29
oramount of system resource load/stress associated with
read IOPS which are handled by the Service identified
by Service_ID;

LOAD(Write@Service_ID) represents a normalized value
(e.g., between 0-1) which expresses the relative degree
oramount of system resource load/stress associated with
write IOPS which are handled by the Service identified
by Service_ID;

LOAD(Write_Buffer@Service_ID) represents a normal-
ized value (e.g., between 0-1) which expresses the rela-
tive size or amount of queued write requests which are
queued on the write cache of the node which is assigned
for use by the Service identified by Service_ID.

LOAD(DSU-Service_ID) represents a normalized value
(e.g., between 0-1) which expresses the relative amount
of disk space utilization (DSU) for the Service identified
by Service_ID.

In at least one embodiment where the Service has been
assigned to handle read/write operations from multiple Cli-
ents, the LOAD(Read) value may reflect read latencies attrib-
utable to read operations associated with the multiple Clients
to which the Service has been assigned. Similarly, where the
Service has been assigned to handle read/write operations
from multiple Clients, the LOAD(Write) value may reflect
write latencies attributable to write operations associated
with the multiple Clients to which the Service has been
assigned.

Example LOAD Calculation Technique B

In another embodiment, a LOAD(Client) value for a given
client may be automatically and/or dynamically determined
by identifying and selecting a relatively highest value from a
set of values which, for example, may include LOAD(client-
read) and LOAD(client-write).

Thus, for example, referring to the example system
embodiment illustrated in FIG. 9, the LOAD(Client A) value
may be automatically and/or dynamically calculated accord-
ing to:

LOAD(Client A) = MAX_ VALUE
LOAD(Write@(Service
LOAD(Write@Service

{(LOAD(Read@Service A),
A),
o)}

where:
MAX_VALUE {x,y,z} represents a function which returns
a relatively highest value selected from the set {x,y,z};
LOAD(Read@Service A) represents a normalized value
(e.g., between 0-1) which expresses the relative degree
oramount of system resource load/stress associated with
read IOPS which are handled by Service A;
LOAD(Write@(Service A) represents a normalized value
(e.g., between 0-1) which expresses the relative degree
oramount of system resource load/stress associated with
write IOPS which are handled by Service A;
LOAD(Write@Service C) represents a normalized value
(e.g., between 0-1) which expresses the relative degree
oramount of system resource load/stress associated with
write [OPS which are handled by Service C.
Similarly, the respective LOAD(Client B) and LOAD(Cli-
ent C) values may each be automatically and/or dynamically
calculated according to:

LOAD(Client B) = MAX_ VALUE {(LOAD(Read@Service E),
LOAD(Write@(Service E),

LOAD(Write@Service D)}

10

15

20

25

30

35

40

45

50

55

60

65

30

-continued

LOAD(Client C) = MAX_ VALUE {(LOAD(Read@Service E),
LOAD(Write@(Service E),
LOAD(Write@Service C),
LOAD(Write@Service G)}.

Load Value Data Structures

FIGS. 10-12 illustrate example embodiments of different
types of data and data structures which may be used to facili-
tate read, write, and replication functionality within the stor-
age system. In at least one embodiment, a separate instance of
one or more of the data structures of FIGS. 10-12 may be
associated with each respective Service which is running
within the storage cluster (e.g., 910) and instantiated and
updated at the same physical node where it’s respective Ser-
vice is instantiated. According to different embodiments, the
storage system may be configured or designed to periodically
and dynamically generate, populate, and update the various
data structures illustrated in FIGS. 10-12.

FIG. 10 illustrates a specific example embodiment of a
LOAD-Service data structure 1000. In at least one embodi-
ment, the LOAD-Service data structure may be configured or
designed for tracking system load characteristics and condi-
tions associated with different services which are running
within the storage system. In at least one embodiment, the
LOAD-Service data structure 1000 may be used for tracking
current or updated LOAD conditions for selected service(s)
running at the storage cluster. In one embodiment, the LOAD-
Service data structure 1000 may be used for tracking current
or updated LOAD conditions for each active slice service
miming at the storage cluster.

An example embodiment of the LOAD-Service data struc-
ture 1000 will now be described by way of example with
reference to the storage system configuration illustrated in
FIG. 9. As illustrated in the example embodiment of FIG. 10,
the LOAD-Service data structure 1000 may include a plural-
ity of records (or entries) (e.g., 1001, 1003, 1005) relating to
specifically identified services within the storage cluster (e.g.,
910, FIG. 9). In at least one embodiment, each record may
include one or more of the following types of information (or
combinations thereof):

Service Identifier information (e.g., Service_ID 1002)
which identifies a specific Service running at the storage
cluster;

System Load information (e.g., LOAD(Service) 1004)
which may include a value (e.g., LOAD(Service) value)
representing the real-time (or near real-time) degree or
amount of system load or stress associated the identified
Service.

According to different embodiments, the LOAD(Service)
value for a given Service may be automatically and/or
dynamically calculated by the storage system (e.g., in real-
time) based, at least partially, on measured amount(s) of read
latency and/or write latency relating to read and/or write
operations associated with the identified Service. For
example, in one embodiment, the system may utilize the
LOAD(Service) Analysis Procedure 1300 (FIG. 13A) to
populate and/or update the LOAD-Service data structure
1000.

FIG. 11 illustrates an alternate example embodiment of a
LOAD-Service data structure 1100 which may be configured
or designed for tracking system load characteristics and con-
ditions associated with different services which are running
within the storage system. As illustrated in the example
embodiment of FIG. 11, the LOAD-Service data structure
1100 may include a plurality of records (or entries) (e.g.,

US 9,054,992 B2

31
1101, 1103, 1105) relating to specifically identified services
within the storage cluster. In at least one embodiment, each
record may include one or more of the following types of
information (or combinations thereof):

Service Identifier information (e.g., Service_ID 1102)
which identifies a specific Service running at the storage
cluster;

LOAD(Read) information 1104 which may include a
LOAD(Read value representing the real-time (or near
real-time) degree or amount of read-related system load
or stress associated with the identified Service;

LOAD(Write) information 1104 which may include a
LOAD(Write) value representing the real-time (or near
real-time) degree or amount of write-related system load
or stress associated with the identified Service.

According to different embodiments, the LOAD(Read)
values may be automatically and/or dynamically calculated
(e.g., in real-time) based, at least partially, on measured
amount(s) of read /O latency which are associated with the
identified Service. According to different embodiments, the
LOAD(Write) values may be automatically and/or dynami-
cally calculated (e.g., in real-time) based, at least partially, on
measured amount(s) of write 1/O latency and/or write cache
queue depth(s) which are associated with the identified Ser-
vice.

FIG. 12 illustrates a specific example embodiment of a
Client-Service data structure 1200. In at least one embodi-
ment, the Client-Service data structure 1200 may be config-
ured or designed for tracking the respective Services which
have been assigned to handle read/write operations associ-
ated with each Client interacting with the storage cluster. For
illustrative purposes, the example Client-Service data struc-
ture embodiment of FIG. 12 will now be described by way of
example with reference to the storage system configuration
illustrated in FIG. 9. As illustrated in the example embodi-
ment of FIG. 12, the Client-Service data structure 1200 may
include a plurality of records (or entries) (e.g., 1201, 1203,
1205) each relating to a specifically identified Client of the
storage system. In at least one embodiment, each record may
include one or more of the following types of information (or
combinations thereof):

Client Identifier information (e.g., Client_ID 1202) which
identifies a specific Client (e.g., Client A, Client B, Cli-
ent C, etc.). In some embodiments, each Client which
interacts with the storage cluster may have associated
therewith a respectively unique connection identifier
(Connection_ID which may be used by the system to
identify and track communications, requests (e.g., read/
write requests), activities, and/or other information
which is associated with a given Client. Thus, for
example, in one embodiment, the Client_ID portion
1202 of a given Client-Service data record (e.g., 1201)
may be represented using that Client’s assigned Connec-
tion_ID identifier.

Primary slice service_ID information 1204 which identi-
fies the primary slice service assigned to handle com-
munications with the identified Client, including the
servicing of read/write requests originating from the
identify client.

Associated Replication Service_ID(s) information 1206
which identifies one or more secondary Service(s) asso-
ciated with the identified client, such as, for example,
those Services which have been assigned to handle
metadata (e.g., slice) and/or data replication tasks which
are associated with the identified Client.

In at least one embodiment, each node in the Cluster

reports to each other node its calculated load values. In this

10

15

20

25

30

35

40

45

50

55

60

65

32

way each node (and/or Service) may be informed about each
other node’s (and/or Service’s) load values. This information
may be used to determine (e.g., on the slice service to which
the Client is connected), the load value of the nodes and/or
Services in the cluster of which that Client is using.

Load values can be calculated or determined using the
shared node/Service resource usage information. In some
embodiments, the storage system may be configured or
designed to distinguish between overloaded conditions which
are due to or caused by different System load values such as,
for example, one or more of the following (or combinations
thereof): reads, writes, bandwidth, compression, etc. For
example, in at least one embodiment, the storage system may
determine that the system (or portion thereof) is: read over-
loaded, write overloaded, bandwidth overloaded, compres-
sion overloaded, etc.

In at least one embodiment, the calculated load values
(which, for example, may be unique to at least one Client
volume) may be used by, along with client metrics, the target
performance manager 402 (of FIG. 4) to determine a target
performance value to be implemented for each respective
Client.

Example Procedures and Flow Diagrams

FIGS. 13-17 illustrate various example embodiments of
different procedures and/or procedural flows which may be
used for facilitating activities relating to one or more of the
storage system QoS aspects disclosed herein.

FIG. 13A shows a flow diagram of a LOAD(Service)
Analysis Procedure 1300 in accordance with a specific
embodiment. Additional, fewer, or different operations of the
procedure 1300 may be performed, depending on the particu-
lar embodiment. The procedure 1300 can be implemented on
a computing device. In one implementation, the procedure
1300 is encoded on a computer-readable medium that con-
tains instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1300. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the LOAD(Ser-
vice) Analysis Procedure may be implemented at one or more
nodes and/or volumes of the storage system. In at least one
embodiment, the LOAD(Service) Analysis Procedure may be
operable to perform and/or implement various types of func-
tions, operations, actions, and/or other features relating to the
analysis, measurement, calculation, and updating of LOAD
information for one or more selected Services running at the
storage cluster. According to specific embodiments, multiple
instances or threads of the LOAD(Service) Analysis Proce-
dure may be concurrently implemented and/or initiated via
the use of one or more processors and/or other combinations
of hardware and/or hardware and software.

According to different embodiments, one or more different
threads or instances of the LOAD(Service) Analysis Proce-
dure may be automatically and/or dynamically initiated and/
or implemented at one or more different time intervals (e.g.,
during a specific time interval, at regular periodic intervals, at
irregular periodic intervals, upon demand, etc.).

As illustrated in the example embodiment of FIG. 13A, at
1302 itis assumed that at least one condition or event has been
detected for initiating execution of the LOAD(Service)
Analysis Procedure. For example, in one embodiment, a
given instance of the LOAD(Service) Analysis Procedure
may be configured or designed to automatically run on a
schedule, e.g., every 500 ms, 1 s, 10 s, 20 s, etc., to thereby
analyze and determine an updated LOAD(Service) value for
the identified Service. In some embodiments, the frequency
of execution of the LOAD(Service) Analysis Procedure for a

US 9,054,992 B2

33

given Service may automatically and/or dynamically vary
based on other events and/or conditions such as, for example,
system metrics, client metrics, changes in QoS management
policies, etc.

As shown at 1304, the LOAD(Service) Analysis Procedure
may initiate analysis of system and/or client metrics for the
identified Service. In at least one embodiment, the analysis of
system and/or client metrics may include measuring, acquir-
ing, and/or determining real-time information relating to read
latency and/or write latency for read and/or write operations
associated with the identified Service.

As shown at 1306, the LOAD(Service) Analysis Procedure
may determine a current LOAD(Service) value for the iden-
tified Service. According to different embodiments, the
LOAD(Service) value may be determined or calculated, for
example, using one or more of the various LOAD calculation
techniques described herein.

As shown at 1308, an optional determination can be made
as to whether or not the current calculated LOAD(Service)
value for the selected Service has changed from a previously
calculated LOAD(Service) value. For example, in one
embodiment, the LOAD(Service) Analysis Procedure may
use the Service_ID of the identified Service to retrieve or
access the LOAD(Service) value (e.g., 904, FIG. 9) from the
local LOAD-Service Table (e.g., 900, FIG. 9), which, for
example, may represent the most recent historical LOAD
value for the identified Service. In at least one embodiment,
the LOAD(Service) Analysis Procedure may compare the
currently calculated LOAD(Service) value to the correspond-
ing LOAD(Service) value retrieved from the LOAD-Service
Table in order to determine whether or not the current calcu-
lated LOAD(Service) value for the selected Service has
changed.

In one embodiment, if it is determined that the current
calculated LOAD(Service) value for the selected Service has
not changed from the LOAD(Service) value stored in the
LOAD-Service Table, no additional actions may be needed at
this time. Alternatively, if it is determined that the current
calculated LOAD(Service) value for the selected Service has
changed from the SLOAD (Service) value stored in the
LOAD-Service Table calculated LOAD(Service) value, the
currently calculated LOAD(Service) value for the selected
Service may be stored (1310) in the local LOAD-Service
Table. Additionally, information and/or notification relating
to this update of the LOAD(Service) value for the selected
Service may be pushed (1312) to one or more of the other
nodes of the storage cluster. In at least one embodiment, upon
receiving the LOAD(Service) value notification update, the
other node(s) may automatically and dynamically update
their respective local LOAD-Service Tables using the
updated LOAD(Service) value information.

FIG. 13B shows a flow diagram of a LOAD(Read) Analy-
sis Procedure 1330 in accordance with a specific embodi-
ment. Additional, fewer, or different operations of the proce-
dure 1330 may be performed, depending on the particular
embodiment. The procedure 1330 can be implemented on a
computing device. In one implementation, the procedure
1330 is encoded on a computer-readable medium that con-
tains instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1330. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the LOAD(Read)
Analysis Procedure may be implemented at one or more
nodes and/or volumes of the storage system. In at least one
embodiment, the LOAD(Read) Analysis Procedure may be
operable to perform and/or implement various types of func-

10

15

20

25

30

35

40

45

50

55

60

65

34

tions, operations, actions, and/or other features relating to the
analysis, measurement, calculation, and updating of LOAD
information for read-related transactions associated with one
or more selected Services running at the storage cluster.

As illustrated in the example embodiment of FIG. 13B, at
1332 itis assumed that at least one condition or event has been
detected for initiating execution of the LOAD(Read) Analysis
Procedure. As shown at 1334, the LOAD(Read) Analysis
Procedure may initiate analysis of read-related system and/or
client metrics for the identified Service. In at least one
embodiment, the analysis of system and/or client metrics may
include measuring, acquiring, and/or determining real-time
information relating to read latency for read operations
handle by (or associated with) the identified Service.

As shown at 1336, the LOAD(Read) Analysis Procedure
may determine a current LOAD(Read) value for the identified
Service. According to different embodiments, the LOAD
(Read) value may be determined or calculated, for example,
using one or more of the various LOAD calculation tech-
niques described herein.

As shown at 1338, an optional determination can be made
as to whether or not the current calculated LOAD(Read) value
for the selected Service has changed from a previously cal-
culated LOAD(Read) value. For example, in one embodi-
ment, the LOAD(Read) Analysis Procedure may use the Ser-
vice_ID of the identified Service to retrieve or access the
LOAD(Read) value (e.g., 1104, FIG. 11) from the local
LOAD-Service Table (e.g., 1100, FIG. 11), which, for
example, may represent the most recent historical LOAD
(Read) value for the identified Service. In atleast one embodi-
ment, the LOAD(Read) Analysis Procedure may compare the
currently calculated LOAD(Read) value to the corresponding
LOAD(Read) value retrieved from the LOAD-Service Table
1100 in order to determine whether or not the current calcu-
lated LOAD(Read) value for the selected Service has
changed.

In one embodiment, if it is determined that the current
calculated LOAD(Read) value for the selected Service has
not changed from the LOAD(Read) value stored in the
LOAD-Service Table, no additional actions may be needed at
this time. Alternatively, if it is determined that the current
calculated LOAD(Read) value for the selected Service has
changed from the SLOAD(Read) value stored in the LOAD-
Service Table calculated LOAD(Read) value, the currently
calculated LOAD(Read) value for the selected Service may
be stored (1340) in the local LOAD-Service Table 1100.
Additionally, information and/or notification relating to this
update of the LOAD(Read) value for the selected Service may
be pushed (1342) to one or more of the other nodes of the
storage cluster. In at least one embodiment, upon receiving
the LOAD(Read) value notification update, the other node(s)
may automatically and dynamically update their respective
local LOAD-Service Tables using the updated LOAD(Read)
value information.

FIG. 13C shows a flow diagram of'a LOAD(Write) Analy-
sis Procedure 1350 in accordance with a specific embodi-
ment. Additional, fewer, or different operations of the proce-
dure 1350 may be performed, depending on the particular
embodiment. The procedure 1350 can be implemented on a
computing device. In one implementation, the procedure
1350 is encoded on a computer-readable medium that con-
tains instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1350. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the LOAD(Write)
Analysis Procedure may be implemented at one or more

US 9,054,992 B2

35

nodes and/or volumes of the storage system. In at least one
embodiment, the LOAD(Write) Analysis Procedure may be
operable to perform and/or implement various types of func-
tions, operations, actions, and/or other features relating to the
analysis, measurement, calculation, and updating of LOAD
information for write-related transactions associated with one
or more selected Services running at the storage cluster.

As illustrated in the example embodiment of FIG. 13C, at
1352 itis assumed that at least one condition or event has been
detected for initiating execution of the LOAD(Write) Analy-
sis Procedure. As shown at 1354, the LOAD(Write) Analysis
Procedure may initiate analysis of write-related system and/
or client metrics for the identified Service. In at least one
embodiment, the analysis of system and/or client metrics may
include measuring, acquiring, and/or determining real-time
information relating to write latency for write operations
handle by (or associated with) the identified Service.

As shown at 1356, the LOAD(Write) Analysis Procedure
may determine a current LOAD(Write) value for the identi-
fied Service. According to different embodiments, the LOAD
(Write) value may be determined or calculated, for example,
using one or more of the various LOAD calculation tech-
niques described herein.

As shown at 1358, an optional determination can be made
as to whether or not the current calculated LOAD(Write)
value for the selected Service has changed from a previously
calculated LOAD(Write) value. For example, in one embodi-
ment, the LOAD(Write) Analysis Procedure may use the
Service_ID of the identified Service to retrieve or access the
LOAD(Write) value (e.g., 1106, FIG. 11) from the local
LOAD-Service Table (e.g., 1100, FIG. 11), which, for
example, may represent the most recent historical LOAD
(Write) value for the identified Service. In at least one
embodiment, the LOAD(Write) Analysis Procedure may
compare the currently calculated LOAD(Write) value to the
corresponding LOAD(Write) value retrieved from the
LOAD-Service Table 1100 in order to determine whether or
not the current calculated LOAD(Write) value for the
selected Service has changed.

In one embodiment, if it is determined that the current
calculated LOAD(Write) value for the selected Service has
not changed from the LOAD(Write) value stored in the
LOAD-Service Table, no additional actions may be needed at
this time. Alternatively, if it is determined that the current
calculated LOAD(Write) value for the selected Service has
changed from the SLOAD(Write) value stored in the LOAD-
Service Table calculated LOAD(Write) value, the currently
calculated LOAD(Write) value for the selected Service may
be stored (1360) in the local LOAD-Service Table 1000.
Additionally, information and/or notification relating to this
update of the LOAD(Write) value for the selected Service
may be pushed (1362) to one or more of the other nodes of the
storage cluster. In at least one embodiment, upon receiving
the LOAD(Write) value notification update, the other node(s)
may automatically and dynamically update their respective
local LOAD-Service Tables using the updated LOAD(Write)
value information.

FIG. 14 shows a flow diagram of a LOAD(Client) Analysis
Procedure 1400 in accordance with a specific embodiment.
Additional, fewer, or different operations of the procedure
1400 may be performed, depending on the particular embodi-
ment. The procedure 1400 can be implemented on a comput-
ing device. In one implementation, the procedure 1400 is
encoded on a computer-readable medium that contains
instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1400. According to different embodiments, at least

10

15

20

25

30

35

40

45

50

55

60

65

36

a portion of the various types of functions, operations,
actions, and/or other features provided by the LOAD(Client)
Analysis Procedure may be implemented at one or more
nodes and/or volumes of the storage system. For example, in
one embodiment, the LOAD(Client) Analysis Procedure may
be initiated and/or performed by the primary slice service
which has been assigned for handling read/write communi-
cations with the identified Client. In at least one embodiment,
the LOAD(Client) Analysis Procedure may be operable to
perform and/or implement various types of functions, opera-
tions, actions, and/or other features relating to the analysis,
measurement, calculation, and updating of LOAD informa-
tion for one or more selected Clients of the storage system.

According to specific embodiments, multiple instances or
threads of the LOAD(Client) Analysis Procedure may be
concurrently implemented and/or initiated via the use of one
or more processors and/or other combinations of hardware
and/or hardware and software. In one embodiment, a separate
instance or thread of the LOAD(Client) Analysis Procedure
may be initiated for each respective Client of the storage
system. In the specific example embodiment of FIG. 14, it is
assumed that the LOAD(Client) Analysis Procedure has been
instantiated to dynamically determine a current or updated
LOAD(Client) value for a selected Client (e.g., Client A, FIG.
9).

According to different embodiments, one or more different
threads or instances of the LOAD(Client) Analysis Procedure
may be automatically and/or dynamically initiated and/or
implemented at one or more different time intervals (e.g.,
during a specific time interval, at regular periodic intervals, at
irregular periodic intervals, upon demand, etc.). For example,
in one embodiment, a given instance of the LOAD(Client)
Analysis Procedure may be configured or designed to auto-
matically run about every 10-20 sec (e.g., for a given Client)
to thereby analyze and determine an updated LOAD(Client)
value for the identified Client. In some embodiments, the
frequency of execution of the LOAD(Client) Analysis Proce-
dure for a given Client may automatically and/or dynamically
vary based on other events and/or conditions such as, for
example, system metrics, client metrics, changes in QoS
management policies, etc.

In the example embodiment of FIG. 14, at 1402 it is
assumed that at least one condition or event has been detected
for initiating execution of the LOAD(Client) Analysis Proce-
dure. As shown at 1404, the LOAD(Client) Analysis Proce-
dure may initiate analysis of system and/or client metrics. In
at least one embodiment, the analysis of system and/or client
metrics may include measuring, acquiring, and/or determin-
ing real-time information relating to read latency and/or write
latency for read/write operations associated with the identi-
fied Client.

Inthe specific example embodiment of FIG. 14, the process
of determining a current LOAD(Client) value for the identi-
fied Client (e.g., Client A) may include identifying (1406) the
appropriate Service(s) which are associated with selected
Client, and which are to be factored into the computation of
the LOAD(Client) value. In this example, it is assumed that
the LOAD(Client) value is a client-specific value which
reflects real-time system load for selected Services (e.g., pri-
mary slice service, replication services) which have been
identified as being associated with the identified Client. For
example, in one embodiment, the LOAD(Client) Analysis
Procedure may use the Client_ID of the identified Client to
access information from the local Client-Service data struc-
ture (e.g., 1100, FIG. 11) in order to identify the specific
Services which are associated with the identified Client (e.g.,
for purposes of LOAD(Client) calculation). By way of

US 9,054,992 B2

37

example, referring to the specific example embodiment of the
Service-Client data structure 1100 of FIG. 11, if it is assumed
that the identified Client corresponds to Client A, the specific
Services associated with Client A may be identified as Ser-
vice A (e.g., which has been assigned as the primary slice
service of Client A), and Service C (e.g., which has been
assigned as a secondary Service of Client A for handling
replication of Client A data/metadata).

As shown at 1408, a current LOAD(Client) value for the
identified Client may be dynamically determined or calcu-
lated. According to different embodiments, the LOAD(Cli-
ent) value may be dynamically determined or calculated, for
example, using one or more of the various LOAD(Client)
calculation techniques described herein. For example, in one
embodiment, a current LOAD(Client) value for Client A may
be dynamically calculated according to:

LOAD(Client A) = MAX_VALUE {(LOAD(Read@Service A),
LOAD(Write@(Service A)
LOAD(Write@Service C)}.

In at least one embodiment, the calculated LOAD(Client)
value may be representative of relative degree or amount of
system resource load or stress relating to 10 activities asso-
ciated with the Service(s) (e.g., primary Service and second-
ary Service(s)) which have been assigned to handle read,
write and replication operations for the identified Client. In at
least one embodiment, the storage system may be configured
or designed to differentiate between read and write related
transactions, and to separately analyze, determine and/or
track LOAD(Read) and LOAD(Write) values associated with
the identified Client. Example embodiments of such tech-
niques are illustrated, for example, in FIGS. 16, 17, 20, and
21, and described in greater detail below.

One concern with the QoS implementation in the storage
system is that clients of relatively “lower” importance may
cause or contribute to increased latencies in the storage clus-
ter, making it more difficult for those Clients of relatively
higher importance (e.g., with relatively higher minimum QoS
performance guarantees) to get fair, proportional throughput
of the system.

By way of example with reference to FIG. 9, it may be
assumed that the storage cluster 910 has been configured to
implement the following QoS performance guarantees:

Client A (902) volume set at 15 k MIN IOPS

40 other Client volumes (including Clients B and C) set at

1k MIN IOPS

10s for each Client are 80% read IOPS and 20% write IOPS

Size of each 10 transaction is 4 kb.

In this example embodiment, it may be assumed for illus-
trative purposes that the storage system is not able to provide
Client A with the specified minimum guaranteed 15% IOPS.
Further, in this example, it is assumed that any increased read
latency is caused by the other 40 Client volumes driving
heavy read workloads. In at least one embodiment, the stor-
age system may be configured or designed to dynamically
determine that, because the Client A workload is read IOPS
heavy, the write-based LOAD values may not play a signifi-
cantrole inthe detected increase inread latency which may be
contributing to the inability of Client A to achieve its MIN
1OPS guarantees.

Target Performance Value Calculations

As noted above, the target performance manager 402 cal-
culates a target performance value based upon system load
values, client load values, and client QoS parameters. The

20

25

30

40

45

55

38

target performance value is then used to control how the client
can access resources of the storage system

FIG. 15 shows a flow diagram of a QoS Client Policy
Management Procedure 1500 in accordance with a specific
embodiment. Additional, fewer, or different operations of the
procedure 1500 may be performed, depending on the particu-
lar embodiment. The procedure 1500 can be implemented on
a computing device. In one implementation, the procedure
1500 is encoded on a computer-readable medium that con-
tains instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1500. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the QoS Client
Policy Management Procedure may be implemented at one or
more nodes and/or volumes of the storage system. For pur-
poses of illustration, it is assumed that the QoS Client Policy
Management Procedure 1500 has been instantiated to per-
form QoS policy management for a selected Client (e.g.,
Client A, FIG. 9).

In at least one embodiment, the QoS Client Policy Man-
agement Procedure may be operable to perform and/or imple-
ment various types of functions, operations, actions, and/or
other features relating to the analysis, measurement, calcula-
tion, and updating of LOAD information for one or more
selected Clients of the storage system. According to specific
embodiments, multiple instances or threads of the QoS Client
Policy Management Procedure may be concurrently imple-
mented and/or initiated via the use of one or more processors
and/or other combinations of hardware and/or hardware and
software. In one embodiment, a separate instance or thread of
the QoS Client Policy Management Procedure may be initi-
ated for performing or facilitating QoS policy management
for each respective Client of the storage system.

According to different embodiments, one or more different
threads or instances of the QoS Client Policy Management
Procedure may be automatically and/or dynamically initiated
and/or implemented at one or more different time intervals
(e.g., during a specific time interval, at regular periodic inter-
vals, at irregular periodic intervals, upon demand, etc.). For
example, in one embodiment, a given instance of the QoS
Client Policy Management Procedure may be configured or
designed to automatically run about every 250-1000 millisec-
onds (e.g., every 500 ms for a given Client) to thereby analyze
and determine an updated LOAD(Client) value for the iden-
tified Client. In some embodiments, the frequency of execu-
tion of the QoS Client Policy Management Procedure for a
given Client may automatically and/or dynamically vary
based on other events and/or conditions such as, for example,
system metrics, client metrics, changes in QoS management
policies, etc.

In the example embodiment of FIG. 15, at 1502 it is
assumed that at least one condition or event has been detected
for initiating execution of the QoS Client Policy Management
Procedure. As shown at 1504, the QoS Client Policy Man-
agement Procedure may initiate analysis of system and/or
client metrics. In at least one embodiment, the analysis of
system and/or client metrics may include measuring, acquir-
ing, and/or determining real-time information relating to read
latencies and/or write latencies for 1O activities associated
with the Service(s) (e.g., primary Service and secondary Ser-
vice(s)) which have been assigned to handle read, write and
replication operations for the identified Client.

As shown at 1506, the QoS Client Policy Management
Procedure may determine a current Load(Client) value for the
identified Client. According to different embodiments, the
Load(Client) value may be determined or calculated, for

US 9,054,992 B2

39

example, using one or more of the various Load(Client) cal-
culation techniques described herein. In the specific example
embodiment of FIG. 15, it is assumed that the Load(Client)
value is a client-specific Load value which factors in both read
latency and write latency metrics for 1O activities associated
with the Service(s) (e.g., primary Service and secondary Ser-
vice(s)) which have been assigned to handle read, write and
replication operations for the identified Client.

As shown at 1508, the QoS Client Policy Management
Procedure may analyze the current Load(Client) value, and in
response, may select and implement an appropriate QoS
Management Policy for the identified Client. For example, as
illustrated in the example embodiment of FIG. 15:

If it is determined that Load(Client)<Threshold Value A1,
the QoS Client Policy Management Procedure may
implement (1510) QoS Management Policy Set Al;

If it is determined that Threshold Value Al=
Load(Client)>Threshold Value A2, the QoS Client
Policy Management Procedure may implement (1512)
QoS Management Policy Set B1;

If it is determined that Load(Client)>Threshold Value A2,
the QoS Client Policy Management Procedure may
implement (1514) QoS Management Policy Set C1.

In at least one embodiment, the storage system may be
configured or designed to: (1) differentiate between read and
write related transactions, and to separately analyze, deter-
mine and/or track Load(Client-Read) and Load(Client-
Write) values associated with a given Client; and (2) inde-
pendently evaluate and implement different respective QoS
Management Policy sets for Client-related Read IOPS and
Client-related Write IOPS. Example embodiments of such
techniques are illustrated, for example, in FIGS. 16, 17, 20,
and 21, and described in greater detail below.

FIG. 18 shows a graphical representation illustrating how
the storage system may implement aspects of a QoS Client
Policy Management Procedure such as that described with
reference to FIG. 15. As illustrated in the example embodi-
ment of FIG. 18, an X-Y graph portion 1800 is shown which
includes a Y-axis representing target performance values cor-
responding to client IOPS 1810 (e.g., both read and write
IOPS) and an X-axis representing a selected Load value
(Load A, 1801). For purposes of illustration, it is assumed
Load A corresponds to the Load(Client) metric for a selected
Client (e.g., Client A). However, it will be appreciated that, in
alternate embodiments (not shown) Load A may correspond
to one of a variety of different metrics described herein such
as, for example, one or more of the following (or combina-
tions thereof): Load(Service); Load(Read); Load(Write);
Load(Write_Buffer); Load(Client-Read); Load(Client-
Write); etc.

As illustrated in the example embodiment of FIG. 18,
graph portion 1800 includes reference lines 1803, 1805, 1807
which represent the min IOPS QoS parameter 1805; max
IOPS QoS parameter 1805; and max burst IOPS QoS param-
eter 1807 for the identified Client. Additionally, graph portion
1800 includes reference lines 1811, 1813, 1815 which, in this
example embodiment, represent threshold values which may
be used to determine and select the current QoS Management
Policy Set in effect for the identified Client. For example, as
illustrated in FIG. 18:

During times when Load A<Threshold Value Al, QoS
Management Policy Set A1 may be set into effect for the
identified Client. In the specific example embodiment of
FIG. 18, region 1802 provides a graphical representation
of'the possible values of IOPS that a client can operate at
in accordance with the QoS Management Policy Set Al.
In this example embodiment, the QoS Management

10

15

20

25

30

35

40

45

50

55

60

65

40

Policy Set A1 may specify that the Client is allowed to
accrue IOPS credits, and that the Client’s IOPS: can be
equal to or less than the Client’s max IOPS QoS param-
eter 1805; may be allowed to operate above the Client’s
max burst IOPS QoS parameter based upon accrued
credits; but is not to exceed the Client’s max burst IOPS
QoS parameter 1807.

During times when Threshold Value Alzl.oad
AzThreshold Value A2, QoS Management Policy Set
B1 may be set into effect for the identified Client. In the
specific example embodiment of FIG. 18, region 1804
provides a graphical representation of the range of IOPS
that a client can perform. In this example embodiment,
the QoS Management Policy Set B1 may specify that the
Client’s IOPS are to be throttled to a target performance
IOPS value which is within a range between the Client’s
max [OPS QoS parameter and min IOPS QoS parameter.
A client can of course use less IOPS that the minimum
IOPS depending upon client’s use of the storage system.
Additionally, the QoS Management Policy Set B1 may
also specify that: (i) that the Client’s IOPS are not to
exceed the Client’s max IOPS QoS parameter; and (ii)
the throttling of the Client’s IOPS increases as the Cli-
ent’s Load(Client) value increases from Threshold
Value A1 (1811) to Threshold Value A2 (1813).

During times when Load A>Threshold Value A2, QoS
Management Policy Set C1 may be set into effect for the
identified Client. In the specific example embodiment of
FIG. 18, region 1806 provides a graphical representation
ofthe possible values of IOPS that a client can operate at
in accordance with the QoS Management Policy Set C1.
In this example embodiment, the QoS Management
Policy Set B1 may specify that the Client’s IOPS are to
be throttled to a target performance IOPS value which is
within a range between the Client’s min IOPS QoS
parameter and zero. Additionally, the QoS Management
Policy Set C1 may also specify that the throttling of the
Client’s IOPS increases as the Client’s Load(Client)
value increases from Threshold Value A2 (1813) to
Threshold Value A3 (1815).

FIG. 19A shows a graphical representation illustrating an
example embodiment of how different QoS Management
Policy Sets for throttling Client IOPS may be automatically
and/or dynamically implemented in response changing [.oad
(Client) conditions. As illustrated in the example embodiment
of FIG. 19A, an X-Y graph portion 1900 is shown which
includes a Y-axis representing target performance values cor-
responding to Client IOPS 1910 (e.g., both read and write
IOPS) and an X-axis representing a client Load(Client) met-
ric for a selected Client (e.g., Client A). As illustrated in the
example embodiment of FIG. 19A, graph portion 1900
includes reference lines 1903, 1905, 1907 which represent the
min [OPS QoS parameter 1905; max IOPS QoS parameter
1905; and max burst IOPS QoS parameter 1907 for the iden-
tified Client. Additionally, graph portion 1900 includes ref-
erence lines 1911, 1913, 1915 which, in this example embodi-
ment, represent threshold values which may be used to
determine and select the current QoS Management Policy Set
to be put into effect for the identified Client. For example, as
illustrated in FIG. 19A:

During times when Load(Client)<Threshold Value Al,
QoS Management Policy Set A1 may be set into effect
for the identified Client. In the specific example embodi-
ment of FIG. 19A, region 1902 provides a graphical
representation of the possible values of IOPS that a
client can operate at in accordance with the QoS Man-
agement Policy Set Al. In this example embodiment, the

US 9,054,992 B2

41

QoS Management Policy Set A1 may specify that the
Client is allowed to accrue IOPS credits, and that the
Client’s IOPS: can be equal to or less than the Client’s
max IOPS QoS parameter 1905; may be allowed to
operate above the Client’s max burst IOPS QoS param-
eter based upon accrued credits; but is not to exceed the
Client’s max burst IOPS QoS parameter 1907. In one
embodiment, the Threshold Value A1 may be defined to
be a numeric value within the range of 0.2-0.4 (e.g.,
Threshold Value A1=0.33);

During times when Threshold Value Al=z
Load(Client)=Threshold Value A2, QoS Management
Policy Set B1 may be set into effect for the identified
Client. In the specific example embodiment of FIG.
19A, region 1904 provides a graphical representation of
the possible values of IOPS that a client can operate at in
accordance with the QoS Management Policy Set B1. In
this example embodiment, the QoS Management Policy
Set B1 may specify that the Client’s IOPS are to be
throttled to a target performance IOPS value which is
within a range between the Client’s max IOPS param-
eter and min IOPS parameter. Additionally, the QoS
Management Policy Set B1 may also specity that, at any
given time (while Threshold Value Al=
Load(Client)=Threshold Value A2), the Client’s IOPS
are to be throttled to a target performance IOPS value
which is dynamically determined based on the Client’s
current (e.g., real-time) Load(Client) value. For
example, in the example embodiment of FIG. 19A,
while the QoS Management Policy Set B1 is in effect,
the Client’s IOPS are to be throttled to a target perfor-
mance IOPS value which does not exceed the corre-
sponding IOPS value defined by boundary curve 1904a
(e.g., which defines the upper limit of the Client’s allow-
able IOPS relative to the Client’s current Load(Client)
value). In one embodiment, the Threshold Value A2 may
be defined to be a numeric value within the range of
0.5-0.8 (e.g., Threshold Value A2=0.66);

During times when Load(Client)>Threshold Value A2,
QoS Management Policy Set C1 may be set into effect
for the identified Client. In the specific example embodi-
ment of FIG. 19A, region 1906 provides a graphical
representation of the possible values of IOPS that a
client can operate at in accordance with the QoS Man-
agement Policy Set C1. Inthis example embodiment, the
QoS Management Policy Set C1 may specify that the
Client’s IOPS are to be throttled to a target performance
IOPS value which is within a range between the Client’s
min [OPS parameter and zero. Additionally, the QoS
Management Policy Set C1 may also specity that, at any
given time (Load(Client)>Threshold Value A2), the Cli-
ent’s IOPS are to be throttled to an target performance
IOPS value which is dynamically determined based on
the Client’s Load(Client) value. For example, in the
example embodiment of FIG. 19A, while the QoS Man-
agement Policy Set C1 is in effect, the Client’s IOPS are
to be throttled to an IOPS value which does not exceed
the corresponding IOPS value defined by boundary
curve 1906a (e.g., which defines the upper limit of the
Client’s allowable IOPS relative to the Client’s current
Load(Client) value). In one embodiment, the Threshold
Value A3 may be defined to be a numeric value within
the range of 0.75-1.0 (e.g., Threshold Value A3=0.85)

According to different embodiments, QoS Management

Policy Sets (and IOPS boundary curves associated therewith)
may be Client specific, and may therefore differ for one or
more Clients. For example, in one embodiment the QoS Man-

10

20

25

30

35

40

45

50

55

60

65

42

agement Policy Sets which may be implemented for Client A
may differ from the QoS Management Policy Sets imple-
mented for Clients B and C. Additionally, in at least one
embodiment, IOPS throttling may be independently imple-
mented and managed across multiple different Clients on a
per Client basis.

For example, FIG. 19B shows an example embodiment
illustrating how QoS Management and IOPS throttling may
be simultaneously, independently, and dynamically imple-
mented for multiple different Clients (e.g., Client A, Client B,
Client C) of the storage system. As illustrated in the example
embodiment of FIG. 19B, an X-Y graph portion 1950 is
shown which includes a Y-axis representing target perfor-
mance values corresponding to client IOPS 1910 (e.g., both
read and write IOPS) and an X-axis representing client L.oad
(Client) values.

As illustrated in the example embodiment of FIG. 19B,
graph portion 1950 includes indications of the each Client’s
min [OPS QoS parameter 1903, max IOPS QoS parameter
1905; and max burst IOPS QoS parameter 1909. Additionally,
graph portion 1950 includes reference lines 1911, 1913, 1915
which, in this example embodiment, represent threshold val-
ues which may be used to determine the particular QoS Man-
agement Policy Set(s) to be used for determining QoS man-
agement and/or IOPS throttling for each Client.

In the specific example embodiment of FIG. 19B, it is
assumed, for ease of illustration, that the min IOPS, max
IOPS, and max burst IOPS values for Clients A, B, C are
identical. However, in other embodiments, the respective the
min IOPS, max IOPS, and max burst IOPS values for Clients
A, B, C may differ for each Client. Similarly, it is assumed for
ease of illustration, that the same LOAD threshold values
(e.g., Al, A2, A3) are to be applied to Clients A, B, C.
However, in other embodiments, each Client may have asso-
ciated therewith a respective set of LOAD threshold values
which may be used for determining the particular QoS Man-
agement Policy Set(s) to be used for that Client.

As illustrated in the example embodiment of FIG. 19B, it is
assumed, for purposes of illustration, that Client A’s current
LOAD value (“LOAD(Client A)”’) 1962 has been calculated
to be LOAD(Client A)=0.23, which is assumed to be less than
the LOAD(Client) Threshold Value Al. Accordingly, in this
example embodiment, the Storage system may determine that
QoS Management Policy Set A1 is to be used for determining
the Target IOPS value for Client A.

Thus, for example, in the example embodiment of FIG.
19B, the Target IOPS value for Client A may be determined
by the coordinate (1962a) at which the LOAD(Client A)
value intersects with QoS Management Policy Set Al
(“QMPA1”) curve 1902a. As illustrated in this example, the
values associated with coordinate 1962a are: (0.23, 1.0,
QMPA1), where:

0.23 represents the LOAD(Client A) value;
QMPA1 represents QoS Management Policy Set Al;

1.0 represents a scaled (and/or normalized) target IOPS
ratio whose value may be determined based on a func-
tion of the QoS Management Policy Set A and the LOAD
(Client) value. For example, in the specific example
embodiment of FIG. 19B, the target IOPS ratio value
may be determined by the point of intersection (e.g.,
1962a) at which the LOAD(Client A) value intersects
with QoS Management Policy Set A1 (“QMPA1”) curve
1902a.

US 9,054,992 B2

43

In at least one embodiment, the Target IOPS value (e.g.,
T1) for Client A may be expressed as a function which is
relative to Client A’s min and max IOPS values, such as, for
example:

TargetIOPS(Client4)=71

T2=(1.0*(MAX o ps(crienzay*MIN;ops Crioncay))
MIN;ops(ciientt)

Thus, for example, the storage system may implement QoS
Management for Client A’s IOs by causing Client A’s IOPSto
be throttled (at least temporarily) to an IOPS value not to
exceed T1. In the example embodiment of FIG. 19B, the
Target IOPS value for Client A (T1) may be determined to be
equal to Client A’s MAX IOPS Value. Additionally, the QoS
Management Policy Set A1 may also permit use of Client A’s
credits for enabling Client A’s IOPS to burst above its respec-
tive MAX IOPS value.

Further, as illustrated in the example embodiment of FIG.
19B, itis assumed, for purposes of illustration, that Client B’s
current LOAD value (“LOAD(Client B)”) 1972 has been
calculated to be LOAD(Client B)=0.39, which is assumed to
be greater than the LOAD(Client) Threshold Value A1, but
less than LOAD(Client) Threshold Value A2. Accordingly, in
this example embodiment, the storage system may determine
that QoS Management Policy Set B1 is to be used for deter-
mining the Target IOPS value for Client B.

Thus, for example, in the example embodiment of FIG.
19B, the Target IOPS value for Client B may be determined
by the coordinate (1972a) at which the LOAD(Client B)
value intersects with QoS Management Policy Set Bl
(“QMPB1”) curve 1904q. As illustrated in this example, the
values associated with coordinate 1972a are: (0.39, 0.48,
QMPB1), where:

0.39 represents the LOAD(Client B) value;

QMPB1 represents QoS Management Policy Set B1;

0.48 represents a scaled (and/or normalized) target IOPS

ratio whose value may be determined based on a func-
tion of the QoS Management Policy Set B and the LOAD
(Client) value. For example, in the specific example
embodiment of FIG. 19B, the target IOPS ratio value
may be determined by the point of intersection (e.g.,
19724) at which the LOAD(Client B) value intersects
with QoS Management Policy Set B1 (“QMPB1”) curve
1904a.

In at least one embodiment, the Target IOPS value (e.g.,
T2) for Client B may be expressed as a function which is
relative to Client B’s MIN and MAX IOPS values, such as, for
example:

TargetIOPS(ClientB)=12

72=(0.48*(MAX opscriensy *MINsops Clion))+
MIN;ops(Clienis)

Thus, for example, the storage system may implement QoS
Management for Client B’s IOs by causing Client B’s IOPSto
be throttled (at least temporarily) to an IOPS value not to
exceed T2.

Similarly, as illustrated in the example embodiment of
FIG. 19B, it is assumed, for purposes of illustration, that
Client C’s current LOAD value (“LOAD(Client C)”) 1982
has been calculated to be LOAD(Client C)=0.55, which is
assumed to be greater than the LOAD(Client) Threshold
Value Al, but less than LOAD(Client) Threshold Value A2.
Accordingly, in this example embodiment, the storage system
may determine that QoS Management Policy Set B1 is to be
used for determining the Target IOPS value for Client C.

44

Thus, for example, in the example embodiment of FIG.
19B, the Target IOPS value for Client C may be determined
by the coordinate (1982a) at which the LOAD(Client C)
value intersects with QoS Management Policy Set Bl

5 (“QMPB1”) curve 1904a. As illustrated in this example, the
values associated with coordinate 1982a are: (0.55, 0.18,
QMPB1), where:

0.55 represents the LOAD(Client C) value;

QMPB1 represents QoS Management Policy Set B1;

0.19 represents a scaled (and/or normalized) target IOPS

ratio whose value may be determined based on a func-

tion of the QoS Management Policy Set B and the LOAD

(Client) value. For example, in the specific example

embodiment of FIG. 19B, the target IOPS ratio value

may be determined by the point of intersection (e.g.,

19824) at which the LOAD(Client C) value intersects

with QoS Management Policy Set B1 (“QMPB1”) curve

1904a.

In at least one embodiment, the Target IOPS value (e.g.,
T3) for Client C may be expressed as a function which is
relative to Client C’s MIN and MAX IOPS values, such as, for
example:

10

20

TargetlOPS(ClientC)=73

25
T3=(0.19*(MAX jops(ciiency tMINgops(Ciens o))+
MIN;ops(ciientc)
Thus, for example, the Storage system may implement
30 QoS Management for Client C’s IOs by causing Client C’s

IOPS to be throttled (at least temporarily) to an IOPS value
not to exceed T3.

Additionally, as illustrated in the example embodiment of
FIG. 19B, it is assumed, for purposes of illustration, that
Client D’s current LOAD value (“LOAD(Client D)) 1992
has been calculated to be LOAD(Client D)=0.74, which is
assumed to be greater than the LOAD(Client) Threshold
Value A2. Accordingly, in this example embodiment, the
Storage system may determine that QoS Management Policy
Set C1 is to be used for determining the Target IOPS value for
Client D.

Thus, for example, in the example embodiment of FIG.
19B, the Target IOPS value for Client D may be determined
by the coordinate (1992a) at which the LOAD(Client D)
value intersects with QoS Management Policy Set C1
(“QMPC1”) curve 1906a. As illustrated in this example, the
values associated with coordinate 1992a are: (0.74, 0.74,
QMPC1), where:

0.74 represents the LOAD(Client D) value;

QMPC1 represents QoS Management Policy Set C1;

0.75 represents a scaled (and/or normalized) target IOPS

ratio whose value may be determined based on a func-
tion of the QoS Management Policy Set C and the LOAD
(Client) value. For example, in the specific example
embodiment of FIG. 19B, the target IOPS ratio value
may be determined by the point of intersection (e.g.,
19924) at which the LOAD(Client D) value intersects
with QoS Management Policy Set C1 (“QMPC1”) curve
1906a.

In at least one embodiment, the Target IOPS value (e.g.,
T4) for Client D may be expressed as a function which is
relative to Client D’s MIN and MAX IOPS values, such as,
for example:

40

TargetlOPS(ClientD)=74

74=0.75* MINIOPS(ClientD)

US 9,054,992 B2

45

Thus, for example, the storage system may implement QoS
Management for Client D’s 10s by causing Client D’s IOPS
to be throttled (at least temporarily) to an IOPS value not to
exceed T4.

It will be appreciated that, in at least some embodiments,
the Storage system may proportionally throttle IOPS for each
Client relative to that Clients defined range of MIN and MAX
IOPS. In some embodiments, the different QoS Management
Policy Sets which are implemented for each respective client
may have the effect of prioritizing some Clients over others.
Additionally, in some embodiments, the QoS Management
Policy Sets may preemptively decrease the target IOPS values
for one or more Clients in order to help prevent the system
from getting overloaded.

As mentioned previously, the storage system may be con-
figured or designed to: (1) differentiate between read and
write related transactions, and to separately analyze, deter-
mine and/or track Load(Client-Read) and Load(Client-
Write) values associated with a given Client; and (2) inde-
pendently evaluate and implement different respective QoS
Management Policy sets for Client-related Read IOPS and
Client-related Write IOPS. Example embodiments of such
techniques are illustrated, for example, in FIGS. 16, 17, 20,
and 21.

FIG. 16 shows a flow diagram of a QoS Client-Read Policy
Management Procedure 1600 in accordance with a specific
embodiment. Additional, fewer, or different operations of the
procedure 1600 may be performed, depending on the particu-
lar embodiment. The procedure 1600 can be implemented on
a computing device. In one implementation, the procedure
1600 is encoded on a computer-readable medium that con-
tains instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1600. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the QoS Client-
Read Policy Management Procedure may be implemented at
one or more nodes and/or volumes of the storage system. For
purposes of illustration, it is assumed that the QoS Client-
Read Policy Management Procedure 1600 has been instanti-
ated to perform QoS policy management for a selected Client
(e.g., Client A, FIG. 9).

In at least one embodiment, the QoS Client-Read Policy
Management Procedure may be operable to perform and/or
implement various types of functions, operations, actions,
and/or other features relating to the analysis, measurement,
calculation, and updating of Load information for one or
more selected Clients of the storage system. According to
specific embodiments, multiple instances or threads of the
QoS Client-Read Policy Management Procedure may be con-
currently implemented and/or initiated via the use of one or
more processors and/or other combinations of hardware and/
or hardware and software. In one embodiment, a separate
instance or thread of the QoS Client-Read Policy Manage-
ment Procedure may be initiated for performing or facilitat-
ing QoS policy management for each respective Client of the
storage system.

According to different embodiments, one or more different
threads or instances of the QoS Client-Read Policy Manage-
ment Procedure may be automatically and/or dynamically
initiated and/or implemented at one or more different time
intervals (e.g., during a specific time interval, at regular peri-
odic intervals, at irregular periodic intervals, upon demand,
etc.). Forexample, in one embodiment, a given instance of the
QoS Client-Read Policy Management Procedure may be con-
figured or designed to automatically run about every 250-
1000 milliseconds (e.g., every 500 ms for a given Client) to

10

15

20

25

30

35

40

45

50

55

60

65

46

thereby analyze and determine an updated Load(Client-
Read) value for the identified Client. In some embodiments,
the frequency of execution of the QoS Client-Read Policy
Management Procedure for a given Client may automatically
and/or dynamically vary based on other events and/or condi-
tions such as, for example, system metrics, client metrics,
changes in QoS management policies, etc.

In the example embodiment of FIG. 16, at 1602 it is
assumed that at least one condition or event has been detected
for initiating execution of the QoS Client-Read Policy Man-
agement Procedure. As shown at 1604, the QoS Client-Read
Policy Management Procedure may initiate analysis of sys-
tem and/or client metrics. In at least one embodiment, the
analysis of system metrics may include measuring, acquiring,
and/or determining real-time information relating to read
latencies for IO activities associated with the Service(s)
which have been assigned to handle read operations for the
identified Client.

As shown at 1606, the QoS Client-Read Policy Manage-
ment Procedure may determine a current Load(Client-Read)
value for the identified Client. According to different embodi-
ments, the Load(Client-Read) value may be determined or
calculated, for example, using one or more of the various
Load(Client-Read) calculation techniques described herein.
In at least one embodiment, the Load(Client-Read) value may
be expressed as a client-specific Load value which takes into
account read latency metrics for IO activities associated with
the Service(s) which have been assigned to handle read opera-
tions for the identified Client.

As shown at 1608, the QoS Client-Read Policy Manage-
ment Procedure may analyze the current Load(Client-Read)
value, and in response, may select and implement an appro-
priate QoS Management Policy for the identified Client. For
example, as illustrated in the example embodiment of FIG.
16:

If it is determined that Load(Client-Read)<Threshold
Value Al, the QoS Client-Read Policy Management
Procedure may implement (1610) QoS Management
Policy Set A2;

If it is determined that Threshold Value Alz[.oad(Client-
Read)=Threshold Value A2, the QoS Client-Read Policy
Management Procedure may implement (1612) QoS
Management Policy Set B2;

If it is determined that Load(Client-Read)>Threshold
Value A2, the QoS Client-Read Policy Management
Procedure may implement (1615) QoS Management
Policy Set C2.

FIG. 20 shows a graphical representation illustrating an
example embodiment of how different QoS Management
Policy Sets for throttling Client IOPS may be automatically
and/or dynamically implemented in response changing [.oad
(Client-Read) conditions. As illustrated in the example
embodiment of FIG. 20, an X-Y graph portion 2000 is shown
which includes a Y-axis representing target performance val-
ues corresponding to Client read IOPS 2010 and an X-axis
representing Load(Client-Read) values for a selected Client
(e.g., Client A). As illustrated in the example embodiment of
FIG. 20, graph portion 2000 includes reference lines 2003,
2005, 2007 which represent the min read IOPS QoS param-
eter 2003; max read IOPS QoS parameter 2005; and max
burst read IOPS QoS parameter 2007 for the identified Client.
Additionally, graph portion 2000 includes reference lines
2011, 2013, 2015 which, in this example embodiment, rep-
resent threshold values which may be used to determine and
select the current QoS Management Policy Set to be put into
effect for the identified Client. For example, as illustrated in
FIG. 20:

US 9,054,992 B2

47

During times when Load(Client-Read)<Threshold Value
A2, QoS Management Policy Set A2 may be set into
effect for the identified Client. In the specific example
embodiment of FIG. 20, region 2002 provides a graphi-
cal representation of the possible values of IOPS that a
client can operate at in accordance with the QoS Man-
agement Policy Set A2. Inthis example embodiment, the
QoS Management Policy Set A2 may specify that the
Client is allowed to accrue IOPS credits, and that the
Client’s IOPS: can be equal to or less than the Client’s
max IOPS QoS parameter 2005; may be allowed to
operate above the Client’s max burst IOPS QoS param-
eter based upon accrued credits; but is not to exceed the
Client’s max burst IOPS QoS parameter 2007.

During times when Threshold Value A2=[.oad(Client-
Read)=Threshold Value A2, QoS Management Policy
Set B2 may be set into effect for the identified Client. In
the specific example embodiment of FIG. 20, region
2004 provides a graphical representation of the possible
values of IOPS that a client can operate at in accordance
with the QoS Management Policy Set B2. In this
example embodiment, the QoS Management Policy Set
B2 may specify that the Client’s read IOPS are to be
throttled to a target performance IOPS value which is
within a range between the Client’s max read IOPS QoS
parameter and min read IOPS QoS parameter. Addition-
ally, the QoS Management Policy Set B2 may also
specify that, at any given time (while Threshold Value
AlzLoad(Client-Read)=Threshold Value A2), the Cli-
ent’s read IOPS are to be throttled to a target perfor-
mance [OPS value which is dynamically determined
based on the Client’s current (e.g., real-time) Load(Cli-
ent-Read) value. For example, in the example embodi-
ment of FIG. 20, while the QoS Management Policy Set
B2 is in effect, the Client’s read IOPS are to be throttled
to a target performance IOPS value which does not
exceed the corresponding IOPS value defined by bound-
ary curve 2004a (e.g., which defines the upper limit of
the Client’s allowable read IOPS relative to the Client’s
current Load(Client-Read) value).

During times when Load(Client-Read)>Threshold Value
A2, QoS Management Policy Set C2 may be set into
effect for the identified Client. In the specific example
embodiment of FIG. 20, region 2006 provides a graphi-
cal representation of the possible values of IOPS that a
client can operate at in accordance with the QoS Man-
agement Policy Set C2. Inthis example embodiment, the
QoS Management Policy Set C2 may specify that the
Client’s read IOPS are to be throttled to a target perfor-
mance [OPS value which is within a range between the
Client’s min read IOPS QoS parameter and zero. Addi-
tionally, the QoS Management Policy Set C2 may also
specify that, at any given time (Load(Client-
Read)>Threshold Value A2), the Client’s read IOPS are
to be throttled to a target performance IOPS value which
is dynamically determined based on the Client’s Load
(Client-Read) value. For example, in the example
embodiment of FIG. 20, while the QoS Management
Policy Set C2 is in effect, the Client’s read IOPS are to be
throttled to an IOPS value which does not exceed the
corresponding IOPS value defined by boundary curve
2006a (e.g., which defines the upper limit of the Client’s
allowable read IOPS relative to the Client’s current Load
(Client-Read) value).

FIG. 17 shows a flow diagram of a QoS Client-Write Policy

Management Procedure 1700 in accordance with a specific
embodiment. Additional, fewer, or different operations of the

10

15

20

25

30

35

40

45

50

55

60

65

48

procedure 1700 may be performed, depending on the particu-
lar embodiment. The procedure 1700 can be implemented on
a computing device. In one implementation, the procedure
1700 is encoded on a computer-readable medium that con-
tains instructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 1700. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the QoS Client-
Write Policy Management Procedure may be implemented at
one or more nodes and/or volumes of the storage system. For
purposes of illustration, it is assumed that the QoS Client-
Write Policy Management Procedure 1700 has been instan-
tiated to perform QoS policy management for a selected
Client (e.g., Client A, FIG. 9).

In at least one embodiment, the QoS Client-Write Policy
Management Procedure may be operable to perform and/or
implement various types of functions, operations, actions,
and/or other features relating to the analysis, measurement,
calculation, and updating of Load information for one or
more selected Clients of the storage system. According to
specific embodiments, multiple instances or threads of the
QoS Client-Write Policy Management Procedure may be
concurrently implemented and/or initiated via the use of one
or more processors and/or other combinations of hardware
and/or hardware and software. In one embodiment, a separate
instance or thread of the QoS Client-Write Policy Manage-
ment Procedure may be initiated for performing or facilitat-
ing QoS policy management for each respective Client of the
storage system.

According to different embodiments, one or more different
threads or instances of the QoS Client-Write Policy Manage-
ment Procedure may be automatically and/or dynamically
initiated and/or implemented at one or more different time
intervals (e.g., during a specific time interval, at regular peri-
odic intervals, at irregular periodic intervals, upon demand,
etc.). Forexample, in one embodiment, a given instance of the
QoS Client-Write Policy Management Procedure may be
configured or designed to automatically run about every 250-
1000 milliseconds (e.g., every 500 ms for a given Client) to
thereby analyze and determine an updated Load(Client-
Write) value for the identified Client. In some embodiments,
the frequency of execution of the QoS Client-Write Policy
Management Procedure for a given Client may automatically
and/or dynamically vary based on other events and/or condi-
tions such as, for example, system metrics, client metrics,
changes in QoS management policies, etc.

In the example embodiment of FIG. 17, at 1702 it is
assumed that at least one condition or event has been detected
for initiating execution of the QoS Client-Write Policy Man-
agement Procedure. As shown at 1704, the QoS Client-Write
Policy Management Procedure may initiate analysis of sys-
tem and/or client metrics. In at least one embodiment, the
analysis of system and/or client metrics may include measur-
ing, acquiring, and/or determining real-time information
relating to write latencies for 10 activities associated with the
Service(s) which have been assigned to handle write and/or
replication operations for the identified Client.

As shown at 1706, the QoS Client-Write Policy Manage-
ment Procedure may determine a current L.oad(Client-Write)
value for the identified Client. According to different embodi-
ments, the Load(Client-Write) value may be determined or
calculated, for example, using one or more of the various
Load(Client-Write) calculation techniques described herein.
In at least one embodiment, the Load(Client-Write) value
may be expressed as a client-specific Load value which takes
into account write latency metrics for 10 activities associated

US 9,054,992 B2

49

with the Service(s) which have been assigned to handle write
and replication operations for the identified Client.

As shown at 1708, the QoS Client-Write Policy Manage-
ment Procedure may analyze the current Load(Client-Write)
value, and in response, may select and implement an appro-
priate QoS Management Policy for the identified Client. For
example, as illustrated in the example embodiment of FIG.
17:

If it is determined that Load(Client-Write)<Threshold
Value Al, the QoS Client-Write Policy Management
Procedure may implement (1710) QoS Management
Policy Set A3;

If it is determined that Threshold Value Al=L.oad(Client-
Write)zThreshold Value A2, the QoS Client-Write
Policy Management Procedure may implement (1712)
QoS Management Policy Set B3;

If it is determined that Load(Client-Write)>Threshold
Value A2, the QoS Client-Write Policy Management
Procedure may implement (1716) QoS Management
Policy Set C1.

FIG. 21 shows a graphical representation illustrating an
example embodiment of how different QoS Management
Policy Sets for throttling Client IOPS may be automatically
and/or dynamically implemented in response changing [L.oad
(Client-Write) conditions. As illustrated in the example
embodiment of FIG. 21, an X-Y graph portion 2100 is shown
which includes a Y-axis representing target performance val-
ues corresponding to client write IOPS 2110 and an X-axis
representing [L.oad(Client-Write) values for a selected Client
(e.g., Client A). As illustrated in the example embodiment of
FIG. 21, graph portion 2100 includes reference lines 2103,
2105, 2107 which represent the min write IOPS QoS param-
eter 2103; max write IOPS QoS parameter 2105; and max
burst write IOPS QoS parameter 2107 for the identified Cli-
ent. Additionally, graph portion 2100 includes reference lines
2111, 2113, 2115 which, in this example embodiment, rep-
resent threshold values which may be used to determine and
select the current QoS Management Policy Set to be put into
effect for the identified Client. For example, as illustrated in
FIG. 21:

During times when Load(Client-Write)<Threshold Value
Al, QoS Management Policy Set A3 may be set into
effect for the identified Client. In the specific example
embodiment of FIG. 21, region 2102 provides a graphi-
cal representation of the possible values of IOPS that a
client can operate at in accordance with the QoS Man-
agement Policy Set A3. Inthis example embodiment, the
QoS Management Policy Set A3 may specify that the
Client is allowed to accrue IOPS credits, and that the
Client’s IOPS: can be equal to or less than the Client’s
max IOPS QoS parameter 2105; may be allowed to
operate above the Client’s max burst IOPS QoS param-
eter based upon accrued credits; but is not to exceed the
Client’s max burst IOPS QoS parameter 2107.

During times when Threshold Value A3zLoad(Client-
Write)=Threshold Value A2, QoS Management Policy
Set B3 may be set into effect for the identified Client. In
the specific example embodiment of FIG. 21, region
2104 provides a graphical representation of the possible
values of IOPS that a client can operate at in accordance
with the QoS Management Policy Set B1. In this
example embodiment, the QoS Management Policy Set
B3 may specify that the Client’s write IOPS are to be
throttled to a target performance IOPS value which is
within a range between the Client’s max write IOPS
QoS parameter and min write IOPS QoS parameter.
Additionally, the QoS Management Policy Set B1 may

10

15

20

25

30

35

40

45

50

55

60

65

50

also specify that, at any given time (while Threshold
Value AlzLoad(Client-Write)=Threshold Value A2),
the Client’s write IOPS are to be throttled to a target
performance IOPS value which is dynamically deter-
mined based on the Client’s current (e.g., real-time)
Load(Client-Write) value. For example, in the example
embodiment of FIG. 21, while the QoS Management
Policy Set B3 is in effect, the Client’s write IOPS are to
be throttled to a target performance IOPS value which
does not exceed the corresponding IOPS value defined
by boundary curve 2104a (e.g., which defines the upper
limit of the Client’s allowable write IOPS relative to the
Client’s current Load(Client-Write) value).

During times when Load(Client-Write)>Threshold Value
A2, QoS Management Policy Set C3 may be set into
effect for the identified Client. In the specific example
embodiment of FIG. 21, region 2106 provides a graphi-
cal representation of the possible values of IOPS that a
client can operate at in accordance with the QoS Man-
agement Policy Set C3. In this example embodiment, the
QoS Management Policy Set C3 may specify that the
Client’s write IOPS are to be throttled to a target perfor-
mance [OPS value which is within a range between the
Client’s min write IOPS QoS parameter and zero. Addi-
tionally, the QoS Management Policy Set C3 may also
specify that, at any given time (Load(Client-
Write)>Threshold Value A2), the Client’s write IOPS
are to be throttled to a target performance IOPS value
which is dynamically determined based on the Client’s
Load(Client-Write) value. For example, in the example
embodiment of FIG. 21, while the QoS Management
Policy Set C3 is in effect, the Client’s write IOPS are to
be throttled to a target performance IOPS value which
does not exceed the corresponding IOPS value defined
by boundary curve 21064 (e.g., which defines the upper
limit of the Client’s allowable write IOPS relative to the
Client’s current Load(Client-Write) value).

In at least one embodiment, at least a portion of the various
QOS techniques described herein may be based, at least in
part, on the ability for the storage system to dynamically
implement individually customized QoS Management Poli-
cies across multiple different Clients of a given cluster.

In an alternate embodiment, when the storage system
determines that a cluster is overloaded, the system may use a
sliding scale to proportionally and evenly throttle the IOPS
associated with each Client of the cluster. As the system
overload increases, each Client’s IOPS may be automatically,
dynamically and/or proportionally backed down (or
throttled) based on each Client’s respective, updated target
IOPS value. Since, the max IOPS and min IOPS QoS param-
eters may differ for each Client, the target performance IOPS
value for each Client may differ even under similar system
load conditions.

For example, at a 5 ms latency, the storage system may
designate the LOAD of the system to be above a first thresh-
old value (e.g., LOAD(System)=70%), which, for example,
may result in the system implementing a first QoS Manage-
ment Policy Set which causes each Client’s IOPS to be
throttled to a value somewhere near their respective min IOPS
QoS parameter. When this occurs, there may be only limited
ways to achieve higher performance on the cluster, such as,
for example, by adding more capacity and/or by lowering the
max IOPS QoS parameters of volumes. Alternatively, at
smaller cluster latencies (e.g., <~2 ms), the storage system
may designate the LOAD of the system to be less than a
second threshold value (e.g., LOAD(System)=30%), and the
system may implement a second QoS Management Policy

US 9,054,992 B2

51

Set which allows clients to continue to burst and go above
their max IOPS QoS parameter. In embodiments where the
cluster is not considered to be overloaded (e.g., the read
latencies are acceptable, and write cache queue(s) are suffi-
ciently low), the cluster load may not affect the final target
performance IOPS value. Thus, for example, if Client A’s
max IOPS QoS parameter is set to 1000 IOPS, and Client A’s
max burst IOPS QoS parameter is set to 1500 IOPS, then,
under non-loaded conditions, the system may set Client A’s
target performance IOPS value to be within the range of 1000
to 1500 IOPS.

Clients Operating Above their Max QoS Parameter (Burst-
ing)

FIG. 7 depicts a graph 700 of a number of IOPS performed
by client 108 over a time period according to one implemen-
tation. A Y-axis shows the number of IOPS performed per
second. Periods of a half second are shown on the X-axis.
Credits are shown that are accumulated when the number of
IOPS is below the max IOPS level (100 IOPS). As shown,
credits increase gradually from time periods 1-8. At time
period 8, the client has accrued roughly 320 credits, as indi-
cated by bar 702. As client 108 bursts above the max IOPS
value, the number of credits starts to decrease. In graph 700,
the client is using roughly 125 IOPS, as shown by square 704,
intime period 9. The client is allowed to burst above their max
IOPS level, since they have accrued credits, as shown by the
bar 702. The client’s IOPS level is capped at their burst [OPS
value. In the graph 700, the client reaches their burst IOPS
value in time periods 10 and 11. When the client is operating
above their max IOPS value, their credits are decreased. In
one implementation, the amount of credits decreased is equal
to amount of IOPS over the client’s max IOPS value. From
time period 13 on, client 108 is operating at the max [OPS
level and the number of credits does not increase.

Credits can be accrued based upon client metrics. For
example, in one embodiment, for each IO operation that the
Client does not utilize while the Client’s IOPS are below a
specified threshold (e.g., while the Client’s IOPS are below
the Client’s max IOPS value), the Client may receive an “IOP
credit” that may be subsequently used (when allowed by the
system) to enable the Client’s IOPS to burst above the Cli-
ent’s max IOPS value. For instance, if it is assumed that the
Client’s max IOPS value is set at 1000 IOPS, and the Client’s
max burst IOPS value is set at 1500 IOPS, and it is further
assumed that the Client is currently only using 900 IOPS and
that the system is not overloaded, the Client may accrue 100
IOPS credits (e.g., each second) which may be subsequently
used enable the Client’s IOPS to burst above 1000 IOPS.

According to different embodiments, one or more limita-
tions or restrictions may be imposed with regards to IOPS
burst activities such as, for example, one or more of the
following (or combinations thereof):

The total IOPS Credits (e.g., for a given Client and/or for a
given cluster) may be capped at a certain amount. For
example, in one embodiment, for a given Client, the total
IOPS Credits which may be accrued by that Client may be
determined according to:

Total IOPS Credits=(max burst IOPS value-max
IOPS value)*burst time.

Thus, in one example embodiment where burst time is set at
10 seconds, the Client may accrue a maximum of (1500-
1000)*10=5000 IOPS credits.

The Client may be limited to using only an allotted portion
of'its accrued IOPS credits during a given time interval. For
example, even though the Client may accrue 5000 credits, the
Client may be permitted to use no more than 500 (e.g., 1500-

30

40

45

60

52

1000=500) of its 5000 credits during one or more specific
time intervals. In addition, bursting can be limited based upon
the QoS policy sets as described above.

Slice Server Rebalancing

As described above, a volume server 122 can be associated
with one or more slice servers 124. Each slice server 124
stores metadata associated with a volume within the system
100. In one implementation, a new slice for a newly created
volume can be placed on a volume server 122 based upon the
capacity of the volume server 124. For example, a volume
server 122 with more free storage capacity can be selected
over other volume servers with less free storage capacity. The
placement of the new slice, however, may not be ideal with
reference to the load of the volume server 122, which can
impact the quality of service for a client accessing the new
volume. To gain a better distribution of slices, load values,
system metrics, client metrics, and QoS parameters described
above can be used to determine when and where to place a
client’s slices. For example, min QoS parameters can be
summed on a particular service. This summed value can be
used to ensure that the service can support the requested QoS
of'the clients. Slices can be placed and/or moved based upon
this summed value across various services.

In one implementation, the QoS parameters of clients are
used to determine a target quality of service index of a par-
ticular volume server. For example, all clients that have a slice
server on a particular volume server can be determined. The
minimum IOPS or maximum IOPS for each client can be
summed. If this value is above a predetermined threshold, a
decision to move one or more slices is made. When the sum is
above the threshold, an alert can be sent to administrators of
the system. The administrator can then determine which slice
to move to another slice server. In an alternative embodiment,
the move can occur automatically in such a way that evens the
quality of service index for each of the slice servers, by
selecting an unloaded volume server. In addition to identify-
ing which volume server is overloaded, underutilized volume
servers can also be identified in a similar manner. A sum of the
minimum IOPS for each volume server can be calculated and
displayed to the administrators. The administrators can then
intelligently select a new volume server. In another imple-
mentation, a slice can be moved automatically based upon
detecting an overloaded volume server.

In addition to using the QoS parameters, performance met-
rics and load values described above can be used to determine
if a volume is overloaded and which volumes are not over-
loaded. For example, the write-cache capacity of a volume
server can be used in conjunction with a client’s metrics to
determine when and which slice to move. A process can
monitor the various system level metrics, such as a volume
server’s write cache capacity, and determine if any volume
server is overloaded. Similar to the target performance man-
ager 402 described above, an overloaded condition can be
determined based upon comparing load values with corre-
sponding thresholds. If an overload condition is detected, the
client metrics, system metrics, and/or load values can be used
to determine if any clients are unproportionally responsible
for the overload condition. For example, a volume server can
have slices and/or slice servers for a number of clients. Two
such clients may account for a large amount of data writes on
the volume server which impacts the volume server’s write
cache capacity. Using the number of IO writes, the amount of
written bandwidth of all of the clients, and/or load values
associated with number of 10 writes and/or bandwidth, the
two clients who are impacting the write cache capacity more
than other clients can be determined. Based upon this char-
acteristic, a slice associated with either of these two clients

US 9,054,992 B2

53

can be selected to be moved to another volume server. This
feature helps ensure that moving a particular slice off of a
volume will have a significant impact in reducing or elimi-
nating the overload condition for the other clients on the
system. Without investigating the client metrics, system met-
rics, and/or load values, a slice could be moved that is not
significantly impacting the performance of a volume server.
This scenario can result in the original volume server still
being overloaded.

In addition, the performance metrics and/or load values
associated with the other volume servers can be analyzed to
find a volume server for a slice. Continuing the above
example, a volume server that can handle a large amount of
writes can be determined. For example, volume servers with
a large write cache capacity or that have a relatively small
number of write IOs across all customers of the volume server
can be identified through either performance metrics or load
values. The slice can then be moved to one of these identified
volume servers, helping to ensure that moving the slice will
not cause an overload condition for the new volume server
based upon moving the slice server.

In one implementation, slice server rebalancing can be
done independently from quality of service monitoring. For
example, checking to determine if any slice should be moved
can be done on a schedule, e.g., every 500 ms, 1 s, 1 minute,
etc. In another implementation, the quality of service moni-
toring and slice server rebalancing can be integrated. For
example, prior to checking the quality of service for clients,
the slice server rebalancing process can be queried to deter-
mine if any slice should be moved. If any volume server is
overloaded, the quality of service monitoring can wait until
the slice is moved. As an overloaded volume server can
impact performance metrics and load values of the system
and clients, the quality of service monitoring may wait until
after the slice servers are rebalanced. This feature allows the
quality of service monitoring to use performance metrics
and/or load values that adequately describe system perfor-
mance and client performances without being negatively
impacted by an overloaded volume server.

One or more flow diagrams have been used herein. The use
of flow diagrams is not meant to be limiting with respect to the
order of operations performed. The herein-described subject
matter sometimes illustrates different components contained
within, or connected with, different other components. Itis to
be understood that such depicted architectures are merely
exemplary, and that in fact many other architectures can be
implemented which achieve the same functionality. In a con-
ceptual sense, any arrangement of components to achieve the
same functionality is effectively “associated” such that the
desired functionality is achieved. Hence, any two compo-
nents herein combined to achieve a particular functionality
can be seen as “associated with” each other such that the
desired functionality is achieved, irrespective of architectures
or intermedial components. Likewise, any two components
so associated can also be viewed as being “operably con-
nected,” or “operably coupled,” to each other to achieve the
desired functionality, and any two components capable of
being so associated can also be viewed as being “operably
couplable” to each other to achieve the desired functionality.
Specific examples of operably couplable include but are not
limited to physically mateable and/or physically interacting
components and/or wirelessly interactable and/or wirelessly
interacting components and/or logically interacting and/or
logically interactable components.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to

20

30

40

45

50

54

the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

Itwill be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may containusage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to inventions containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should typically be interpreted to mean “at least one” or “one
or more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two recita-
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least
one of A, B, or C, etc.” is used, in general such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of'A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”

The foregoing description of illustrative implementations
has been presented for purposes of illustration and of descrip-
tion. It is not intended to be exhaustive or limiting with
respect to the precise form disclosed, and modifications and
variations are possible in light of the above teachings or may
be acquired from practice of the disclosed implementations. It
is intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.

US 9,054,992 B2

55

What is claimed is:

1. A method comprising:

receiving client quality of service values associated with a

first client;

determining client metrics of a volume in a storage system

based upon use of the volume by the first client, wherein
the storage system stores data from a plurality of clients,
and wherein the client metrics reflect usage of the stor-
age system by the first client;

determining, using a processor, a client load value based

upon the client metrics;
determining a quality of service management policy for the
first client from a plurality of quality of service manage-
ment policies based upon the client load value, wherein
each quality of service management policy comprises a
formula based on a quality of service parameter;

calculating a client target performance value based upon
the formula of the quality of service management policy
and the received client quality of service values;

adjusting performance of the storage system for the first
client based upon the client target performance value,
wherein performance of the storage system is adjusted
for a second client of the storage system based upon a
different client target performance value associated with
the second client;

receiving a schedule of quality of service values associated

with the first client that includes quality of service val-
ues, wherein each quality of service value is associated
with a date or a time of day;

determining the client quality of service values to use in

calculating the client target performance value based
upon the schedule of quality of service values;

wherein receiving the schedule of quality of service values

includes receiving a request to increase a maximum
quality of service value for a time period;

setting the maximum quality of service parameter for the

first client to an increased maximum quality of service
value for the time period; and

resetting the maximum quality of service parameter to the

maximum quality of service value after expiration of the
time period.

2. The method of claim 1, further comprising setting the
maximum quality of service parameter for the first client to a
maximum quality of service value, wherein the client quality
of service values include the maximum quality of service
value, and wherein the formula of at least one quality of
service management policy is based upon the maximum qual-
ity of service parameter.

3. The method of claim 1, wherein the calculated client
target performance value is based on the maximum quality of
service value.

4. The method of claim 1, further comprising setting a
maximum burst quality of service parameter for the first client
to a maximum burst quality of service value, wherein the
client quality of service values include the maximum burst
quality of service value, wherein the formula of at least one
quality of service management policy is based upon the maxi-
mum burst quality of service parameter, and wherein the
calculated client target performance value for the client is
above the maximum quality of service value and below or
equal to the maximum burst quality of service value.

5. The method of claim 1, further comprising setting a
minimum quality of service parameter for the first client to a
minimum quality of service value, wherein the client quality
of service values include the minimum quality of service
value, wherein the formula of at least one quality of service
management policy is based upon the minimum quality of

15

25

30

35

40

45

55

56

service parameter, and wherein the calculated client target
performance value for the client is below the minimum qual-
ity of service value.

6. The method of claim 1, wherein the determining the
client load value based upon the client metrics comprises
adding a plurality of client metrics, wherein each client metric
is multiplied by a weighted variable.

7. A non-transitory computer-readable medium having
instructions stored thereon, that when executed by a comput-
ing device cause the computing device to perform operations
comprising:

receiving client quality of service values associated with a

first client;

determining client metrics of a volume in a storage system

based upon use of the volume by the first client, wherein
the storage system stores data from a plurality of clients,
and wherein the client metrics reflect usage of the stor-
age system by the first client;

determining a client load value based upon the client met-

rics;
determining a quality of service management policy for the
first client from a plurality of quality of service manage-
ment policies based upon the client load value, wherein
each quality of service management policy comprises a
formula based on a quality of service parameter;

calculating a client target performance value based upon
the formula of the quality of service management policy
and the received client quality of service values;

adjusting performance of the storage system for the first
client based upon the client target performance value,
wherein performance of the storage system is adjusted
for a second client of the storage system based upon a
different client target performance value associated with
the second client;

receiving a schedule of quality of service values associated

with the first client that includes quality of service val-
ues, wherein each quality of service value is associated
with a date or a time of day;
determining the client quality of service values to use in
calculating the client target performance value based
upon the schedule of quality of service values;

wherein receiving the schedule of quality of service values
includes receiving a request to increase a maximum
quality of service value for a time period;

setting the maximum quality of service parameter for the

first client to an increased maximum quality of service
value for the time period; and

resetting the maximum quality of service parameter to the

maximum quality of service value after expiration of the
time period.

8. The non-transitory computer-readable medium of claim
7, wherein the operations further comprise setting the maxi-
mum quality of service parameter for the first client to a
maximum quality of service value, wherein the client quality
of service values include the maximum quality of service
value, and wherein the formula of at least one quality of
service management policy is based upon the maximum qual-
ity of service parameter.

9. The non-transitory computer-readable medium of claim
7, wherein the calculated client target performance value is
based on the maximum quality of service value.

10. The non-transitory computer-readable medium of
claim 7, wherein the operations further comprise setting a
maximum burst quality of service parameter for the first client
to a maximum burst quality of service value, wherein the
client quality of service values include the maximum burst
quality of service value, wherein the formula of at least one

US 9,054,992 B2

57

quality of service management policy is based upon the maxi-
mum burst quality of service parameter, and wherein the
calculated client target performance value for the client is
above the maximum quality of service value and below or
equal to the maximum burst quality of service value.

11. The non-transitory computer-readable medium of
claim 7, wherein the operations further comprise setting a
minimum quality of service parameter for the first client to a
minimum quality of service value, wherein the client quality
of service values include the minimum quality of service
value, wherein the formula of at least one quality of service
management policy is based upon the minimum quality of
service parameter, and wherein the calculated client target
performance value for the client is below the minimum qual-
ity of service value.

12. The non-transitory computer-readable medium of
claim 7, wherein the determining the client load value based
upon the client metrics comprises adding a plurality of client
metrics, wherein each client metric is multiplied by a
weighted variable.

13. A system comprising:

one or more processors configured to:

receive client quality of service values associated with a
first client;

determine client metrics of a volume in a storage system
based upon use of the volume by the first client,
wherein the storage system stores data from a plural-
ity of clients, and wherein the client metrics reflect
usage of the storage system by the first client;

determine a client load value based upon the client met-
rics;

determine a quality of service management policy for
the first client from a plurality of quality of service
management policies based upon the client load
value, wherein each quality of service management
policy comprises a formula based on a quality of
service parameter;

calculate a client target performance value based upon
the formula of the quality of service management
policy and the received client quality of service val-
ues; and

adjust performance of the storage system for the first
client based upon the client target performance value,
wherein performance of the storage system is
adjusted for a second client of the storage system
based upon a different client target performance value
associated with the second client;

receive a schedule of quality of service values associated

with the first client that includes quality of service val-

10

15

20

25

30

35

40

45

58

ues, wherein each quality of service value is associated
with a date or a time of day;

determine the client quality of service values to use in

calculating the client target performance value based
upon the schedule of quality of service values;

receive a request to increase a maximum quality of service

value for a time period;

set the maximum quality of service parameter for the first

client to an increased maximum quality of service value
for the time period; and

reset the maximum quality of service parameter to the

maximum quality of service value after expiration of the
time period.

14. The system of claim 13, wherein the one or more
processors are further configured to set the maximum quality
of service parameter for the first client to a maximum quality
of service value, wherein the client quality of service values
include the maximum quality of service value, and wherein
the formula of at least one quality of service management
policy is based upon the maximum quality of service param-
eter.

15. The system of claim 13, wherein the calculated client
target performance value is based on the maximum quality of
service value.

16. The system of claim 13, wherein the one or more
processors are further configured to set a maximum burst
quality of service parameter for the first client to a maximum
burst quality of service value, wherein the client quality of
service values include the maximum burst quality of service
value, wherein the formula of at least one quality of service
management policy is based upon the maximum burst quality
of service parameter, and wherein the calculated client target
performance value for the client is above the maximum qual-
ity of service value and below or equal to the maximum burst
quality of service value.

17. The system of claim 13, wherein the one or more
processors are further configured to set a minimum quality of
service parameter for the first client to a minimum quality of
service value, wherein the client quality of service values
include the minimum quality of service value, wherein the
formula of at least one quality of service management policy
is based upon the minimum quality of service parameter, and
wherein the calculated client target performance value for the
client is below the minimum quality of service value.

18. The system of claim 13, wherein the one or more
processors to determine the client load value based upon the
client metrics is configured to add a plurality of client metrics,
wherein each client metric is multiplied by a weighted vari-
able.

